- 博客(7)
- 收藏
- 关注
转载 word2vec傻瓜剖析
2013年末,Google发布的word2vec引起了一帮人的热捧,各种兴奋。时至今日,各地讨论的也不似如此频繁,也是时候写一下个人对它的理解,亦可避免被真正的有识之士鄙视。 在大量赞叹word2vec的微博或者短文中,几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼“深度学习在自然语言领域开始发力了”。但实际上,简单看看代码就知道它实际上只是一个三层网络,压根算
2014-09-25 10:16:45
180
原创 梯度回波
FISP 三个方向回聚,Mz和Mxy均达到稳态,使T1,T2*影响变小,成PDWI。 FLASH Mz方向回聚,Mxy被扰相。所以一般T1WI:TR取100~200ms,T2*WI:TR取200~500ms。 Turbo-FLASH TR,TE都比FLASH小,成PDWI。
2014-08-22 19:44:52
669
原创 MRI零散知识点
饱和带原理 90°的脉冲激发,然后使用梯度进行散相,后面加上成像模块。 关于图像对比 纵向的磁化矢量成像,实现的是T1对比;横向的磁化矢量成像,实现的是T2(T2*)对比。 所以TE越短,翻转的Mz保留越多,T1对比越强。TE越长,翻转的Mz保留越少,T2弛豫越严重。 TR越短,使Mz不能完全恢复,T1增强。TR很长,Mz完全恢复,没有了T1的对比。
2014-08-22 19:39:40
208
原创 MRI技术之大师的路
MRI自它诞生之日起,很多大牛们研究出诸多天才式的想法和技术,把MRI技术推进到今天的水平。曾经也想向这些大牛一样,真正进入这个领域,才发现能走的路基本上都被走过了,只剩下点汤水聊以解馋了。长话短说,咱们进入正题。 上回讲到,为了区别不同位置的体素(Pixel),可以通过给不同未知的体素打上不同的标签,目前MRI中一般使用的就是打上不同的相位标签,因为这个相位标签,使得MRI成像与傅里叶变换紧紧
2014-08-19 20:44:56
180
原创 OpenCV命名规则
OpenCV使用近似匈牙利命名法的方法,比较值得一提的特色是:它的数据结构几乎都是大写的Cv开头,而它提供的函数都是小写的cv,举个例子: CvSize ImageSize = cvSize(400,300); //cvSize(width,height) ImageSize的类型是CvSize,通过cvSize()函数來初始化结构体:400代表的是宽、300代表的是高;CvSiz
2014-08-15 09:49:08
272
原创 机器学习摘要-概念学习
2.1 Find-S:寻找极大特殊假设 如何使用more-general-than偏序来搜索与训练样例相一致的假设?一种办法是从H中最特殊假设开始,然后在该假设覆盖正例失败时将其一般化(当一假设能正确地划分一个正例时,称该假设“覆盖”该正例)。使用偏序实现的Find-S算法的精确描述见表2-3。 表2-3 Find-S算法 1. 将h初始化为H中最特殊假设
2014-08-15 09:23:06
537
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人