自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(7)
  • 收藏
  • 关注

原创 N-Gram document Classifier

基本原理 将ben

2014-10-23 14:21:16 124

转载 word2vec傻瓜剖析

2013年末,Google发布的word2vec引起了一帮人的热捧,各种兴奋。时至今日,各地讨论的也不似如此频繁,也是时候写一下个人对它的理解,亦可避免被真正的有识之士鄙视。 在大量赞叹word2vec的微博或者短文中,几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼“深度学习在自然语言领域开始发力了”。但实际上,简单看看代码就知道它实际上只是一个三层网络,压根算

2014-09-25 10:16:45 180

原创 梯度回波

FISP 三个方向回聚,Mz和Mxy均达到稳态,使T1,T2*影响变小,成PDWI。 FLASH Mz方向回聚,Mxy被扰相。所以一般T1WI:TR取100~200ms,T2*WI:TR取200~500ms。 Turbo-FLASH TR,TE都比FLASH小,成PDWI。

2014-08-22 19:44:52 669

原创 MRI零散知识点

饱和带原理 90°的脉冲激发,然后使用梯度进行散相,后面加上成像模块。 关于图像对比 纵向的磁化矢量成像,实现的是T1对比;横向的磁化矢量成像,实现的是T2(T2*)对比。 所以TE越短,翻转的Mz保留越多,T1对比越强。TE越长,翻转的Mz保留越少,T2弛豫越严重。 TR越短,使Mz不能完全恢复,T1增强。TR很长,Mz完全恢复,没有了T1的对比。

2014-08-22 19:39:40 208

原创 MRI技术之大师的路

MRI自它诞生之日起,很多大牛们研究出诸多天才式的想法和技术,把MRI技术推进到今天的水平。曾经也想向这些大牛一样,真正进入这个领域,才发现能走的路基本上都被走过了,只剩下点汤水聊以解馋了。长话短说,咱们进入正题。 上回讲到,为了区别不同位置的体素(Pixel),可以通过给不同未知的体素打上不同的标签,目前MRI中一般使用的就是打上不同的相位标签,因为这个相位标签,使得MRI成像与傅里叶变换紧紧

2014-08-19 20:44:56 180

原创 OpenCV命名规则

OpenCV使用近似匈牙利命名法的方法,比较值得一提的特色是:它的数据结构几乎都是大写的Cv开头,而它提供的函数都是小写的cv,举个例子: CvSize ImageSize = cvSize(400,300); //cvSize(width,height) ImageSize的类型是CvSize,通过cvSize()函数來初始化结构体:400代表的是宽、300代表的是高;CvSiz

2014-08-15 09:49:08 272

原创 机器学习摘要-概念学习

2.1 Find-S:寻找极大特殊假设 如何使用more-general-than偏序来搜索与训练样例相一致的假设?一种办法是从H中最特殊假设开始,然后在该假设覆盖正例失败时将其一般化(当一假设能正确地划分一个正例时,称该假设“覆盖”该正例)。使用偏序实现的Find-S算法的精确描述见表2-3。 表2-3 Find-S算法 1.          将h初始化为H中最特殊假设

2014-08-15 09:23:06 537

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除