今天学习了一下差分数组,觉得好神奇啊。
1.定义:
对于已知有n个元素的离线数列d,我们可以建立记录它每项与前一项差值的差分数组f:显然,f[1]=d[1]-0=d[1];对于整数i∈[2,n],我们让f[i]=d[i]-d[i-1]。
2.简单性质:
(1)计算数列各项的值:观察d[2]=f[1]+f[2]=d[1]+d[2]-d[1]=d[2]可知,数列第i项的值是可以用差分数组的前i项的和计算的,即d[i]=f[i]的前缀和,即d[i]=f[i]+f[i-1]+.....+f[1]。
(2)计算数列每一项的前缀和:第i项的前缀和即为数列前i项的和,那么推导可知
即可用差分数组求出数列前缀和;
3.用途:
(1)快速处理区间加减操作:
假如现在对数列中区间[L,R]上的数加上x,我们通过性质(1)知道,第一个受影响的差分数组中的元素为f[L],即令f[L]+=x,那么后面数列元素在计算过程中都会加上x;最后一个受影响的差分数组中的元素为f[R],所以令f[R+1]-=x,即可保证不会影响到R以后数列元素的计算。这样我们不必对区间内每一个数进行处理,只需处理两个差分后的数即可;[这里需要用代入实例理解]。
(2)询问区间和问题:
由性质(2)我们可以计算出数列各项的前缀和数组sum各项的值;那么显然,区间[L,R]的和即为ans=sum[R]-sum[L-1];
//修改区间,查询点
#include<iostream>
#include<cstring>
#include <cstdio>
using namespace std;
const int maxn=100005;
const int maxq=100005;
int d[maxn];
int f[maxn];
int n,q;
void update(int x,int y,int z)
{
f[x]+=z;
f[y+1]-=z;
}
int sum(int x)
{
int ans=0;
for(int i=1; i<=x; i++)
ans+=f[i];
return ans;
}
int main()
{
cin>>n;
for(int i=1; i<=n; i++)
cin>>d[i];
f[1]=d[1];
for(int i=2; i<=n; i++)
f[i]=d[i]-d[i-1];
cin>>q;
while(q--)
{
int x;
cin>>x;
if(x==1)
{
int y,z,w;
cin>>y>>z>>w;
update(y,z,w);
}
if(x==2)
{
int y;
cin>>y;
cout<<sum(y)<<endl;
}
}
return 0;
}
/*
5
1 2 3 4 5
10
1
2 3 2
2 3
*/