当 f(i−1)+k≥i f(i-1)+k ≥ if(i−1)+k≥i 时,直接递推。
当 f(i−1)+k<i f(i-1)+k < if(i−1)+k<i 时,加速优化。
那么可以加速多少步呢?设加速步数为 x。
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
//f(i)=[f(i-1)+m]%i
int main()
{
ll n,m;
while(cin>>n>>m)
{
if(m==1) {
cout<<n<<endl;
continue;
}
ll ans = 0,i=2;
while(i<=n)
{
if(ans+m<i)
{
ll num = (i-ans-1)/(m-1);
if((i-ans-1)%(m-1)==0)
num--;
if(i+num>n)
{
ans = (ans+(n-i+1)*m)%n;
break;
}else{
i+=num;
ans = (ans+m*num)%i;
}
}else{
ans = (ans+m)%i;
i++;
}
}
cout<<(ans+1ll)<<endl;
}
return 0;
}
/*
思路:f(1)=0;f(i)=[f(i-1)+m]%i 这里n非常大。
1:当m=1的时候接就是最后的那个人了
2: f(i-1)+m<i 满足条件时,算一下可以跳多少次还在满足条件下,即 f(i-1)+m*num<i-1+num 求满足条件的最大num
如果加上起始位置的话对最后的(ans+s)%n即可。
*/