2020-09-28【学习笔记】【企业数据湖】五、基于Apache Sqoop的批量数据获取(2)

六、sqoop运行范例

暂不介绍,请参考相关博客

七、适合使用sqoop的场景

HDFS作为主要的数据存储手段,用于存储来自于各不同源系统的数据。

对于RDBMS与Hadoop数据传输,例如常规的批处理,或近似批处理,比较适合

从MongoDB,Cassandra之类的NoSQL数据库传输数据到Hadoop文件系统中

拥有大量依赖关系数据库的应用软件的企业,sqoop是数据传输的最佳选择

Hadoop是一个存储海量数据的事实上的标准。

如果需要考虑传输性能时,适合使用sqoop

sqoop中有connector的概念,如果企业中有多种不同的依赖不同的数据库的应用程序,sqoop是一个理想的选择

八、不适合sqoop的场景

事件驱动型数据

多源流式数据的处理与传输

处理实时数据而不是批处理

处理宿主在web服务器上的各种应用程序产生的日志形式的数据

如果当sqoop job执行时,源系统不能承受较大的压力,那么应避免使用sqoop

九、实时sqoop是否可行

不推荐使用,用flume+kafka它不香吗?

十、其他选项

1、原生大数据connector

2、Talend(开源etl开发,调度,监控工具)

3、Pentaho Kettle(PDI-Pentaho数据集成)开源商业智能软件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值