六、sqoop运行范例
暂不介绍,请参考相关博客
七、适合使用sqoop的场景
HDFS作为主要的数据存储手段,用于存储来自于各不同源系统的数据。
对于RDBMS与Hadoop数据传输,例如常规的批处理,或近似批处理,比较适合
从MongoDB,Cassandra之类的NoSQL数据库传输数据到Hadoop文件系统中
拥有大量依赖关系数据库的应用软件的企业,sqoop是数据传输的最佳选择
Hadoop是一个存储海量数据的事实上的标准。
如果需要考虑传输性能时,适合使用sqoop
sqoop中有connector的概念,如果企业中有多种不同的依赖不同的数据库的应用程序,sqoop是一个理想的选择
八、不适合sqoop的场景
事件驱动型数据
多源流式数据的处理与传输
处理实时数据而不是批处理
处理宿主在web服务器上的各种应用程序产生的日志形式的数据
如果当sqoop job执行时,源系统不能承受较大的压力,那么应避免使用sqoop
九、实时sqoop是否可行
不推荐使用,用flume+kafka它不香吗?
十、其他选项
1、原生大数据connector
2、Talend(开源etl开发,调度,监控工具)
3、Pentaho Kettle(PDI-Pentaho数据集成)开源商业智能软件