【1】排列组合的谜题

结论一:有n组球,每组一种颜色,每组至少k个,要得到k种同色球必须抽取n(k-1)+1个球(准确描述应该是:至少抽取n(k-1)个球一定能保证其中包含k种同色球)。

证明: 最糟糕的情况莫过于——前n(k-1)次的抽取各个种类分别出现了k-1个球,很显然。

如果一组或多组球的个数少于k呢?

设有m组球的个数是小于k的,则大于k的有n-m组,道理和结论一一致,唯一的区别在于只不过球个数小于k的,把这些球取完了就是了,设小于k的m组共有球为s,那么至少抽取的次数为s+(n-m)(k-1)

问题变形:抽取n张牌(n在7到24之间),每次都不放回,请问抽到7张同花色的概率是多少?

分类讨论该问题:

(1)n<7时,概率为0;

(2)n>24时,概率为1;

  (3)  位于7到24之间时,总共是C(7, 52)种抽取,结果是恰好有7个同花色,花色四选一C(1, 4),再从某一花色选取7张C(7, 13), 剩余的是C(n-7, 39),所以概率  为C(1, 4) * C(7, 13) * C(n-7, 39) / C(7, 52);

如果问题改为放回呢?

如果放回,针对情况3,首先还是看底,取n次共有52^n种情况,其中n次里面恰好有7张同花色,花色四选一C(1, 4),7张的选择可能是13^7,剩余的n-7张的选择是39^(n-7),所以概率为C(1,4)*13^7*39^(n-7)/52^n。

问题变形:若要抽的k张同花色的牌(放回或不放回)则抽取牌数的期望值是多大?

结论二:(1)有n个人参加的淘汰赛,那么淘汰赛中轮空的人数等于大于等于n的最小的2的指数幂与n的差的二进制表示中1的个数。

举例说明:比如说37人参加的比赛,那么这一淘汰赛中总共轮空的人次为2^6=64-37=27,其二进制表示形式为11011,包括4个1,所以整个比赛共轮空4个人次;

(2)一共有n个人参加的淘汰赛比赛场次的数目为n-1场。

 为什么是n-1?

 道理很简单,因为n个人参加的比赛需要淘汰n-1个人,因为1场比赛淘汰一个人,所以总共比赛场次为n-1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值