学习笔记
文章平均质量分 93
无
qikik
这个作者很懒,什么都没留下…
展开
-
线性代数的本质
如何形象理解线性代数原创 2022-07-09 00:22:55 · 727 阅读 · 0 评论 -
MapReduce实例伪代码
大数据考前突击原创 2022-06-27 00:15:45 · 2210 阅读 · 0 评论 -
CGAL 5.2 - 2D Apollonius Graphs (Delaunay Graphs of Disks)学习与翻译
本文基于CGAL 5.2 - 2D Apollonius Graphs (Delaunay Graphs of Disks) 进行翻译和学习文章目录定义Apollonius diagramspart 1part 2 : 关于wiw_iwi的讨论Apollonius graphpart 1part 2 :general positionpart 3 :hidden circles定义根据图片提出问题:what is apollonius diagram?what is apollonius gr翻译 2021-09-26 19:45:05 · 313 阅读 · 0 评论 -
CGAL 5.2 - 2D Straight Skeleton and Polygon Offsetting 学习与翻译
本文基于CGAL 5.2 - 2D Straight Skeleton and Polygon Offsetting进行翻译和学习文章目录一、定义1.1二维轮廓(2D Contour)1.2二维带孔多边形(2D Polygon with Holes)1.3非退化并严格简单孔洞多边形的向内偏移( Inward Offset of a Non-degenerate Strictly-Simple Polygon with Holes)1.4二维非退化严格简单孔洞多边形的直线骨架(Straight Skelet翻译 2021-09-26 19:44:19 · 2097 阅读 · 0 评论 -
扫描线划分Voronoi diagram_算法分析(英译中)
原文地址http://www.ams.org/samplings/feature-column/fcarc-voronoi非全文翻译,仅翻译部分内容并加入了一些自己的理解Introduction假设你住在沙漠里,那里唯一的水源是散布在各处的几股泉水。对于每个位置,您需要确定离它最近的泉水。结果可能是一张地图,就像这里显示的那样,其中地形被划分为最接近不同泉水的位置区域。这样的地图经常出现在各种应用程序中,并冠以许多名称。对于数学家来说,它们被称为Voronoi图。Constructing Voro翻译 2020-10-07 17:56:17 · 1852 阅读 · 0 评论