- 博客(12)
- 收藏
- 关注
原创 如何从虚拟机复制文件到实体机
问题背景最近做cadence项目,然后需要把文件从虚拟机里面弄到实体机上,但是我并不太懂linux的操作,结合数篇blog之后终于操作成功,决定写下这个blog让大家少走弯路。过程1)把虚拟机关掉,然后选“虚拟机”——“设置”2)左上角选择“选项”,右边选择“总是启用”,在右下添加文件夹(这里是实体机的文件夹,记住你的文件夹名字,我的叫cadence_doc)3)开虚拟机,桌面空白处点右键,选择open terminal,开始操作4)输入: cd /etc (注意空格)5)输入:
2022-05-30 13:59:42 17614 3
原创 专栏学习Day 3:list 和 tuple 的基本操作、深浅拷贝和切片操作详细等 5 个方面总结
本python学习系列旨在记录自己的学习情况与学习问题,希望能帮助自己培养良好的学习习惯。学习专栏来源于:https://gitbook.cn/m/mazi/comp/column?columnId=5e37978dec8d9033cf916b5d&utm_source=columnweixinshare&utm_campaign=Python%20%E5%85%A8%E6%A0%88%2060%20%E5%A4%A9%E7%B2%BE%E9%80%9A%E4%B9%8B%E8%B7%AF(
2020-10-08 13:17:30 221
原创 专栏学习Day 1:Python 两大特性和四大基本语法
本python学习系列旨在记录自己的学习情况与学习问题,希望能帮助自己培养良好的学习习惯。学习专栏来源于:https://gitbook.cn/m/mazi/comp/column?columnId=5e37978dec8d9033cf916b5d&utm_source=columnweixinshare&utm_campaign=Python%20%E5%85%A8%E6%A0%88%2060%20%E5%A4%A9%E7%B2%BE%E9%80%9A%E4%B9%8B%E8%B7%AF(
2020-10-04 18:25:56 262
原创 8-1 图论最短路径问题
图的基本概念图包括点和线(分无向和有向),一般用点表示事物,用线表示关系图可以用矩阵表示:比如(3,4)对应的点为2,表示的就是第三行第四列的点,在图中表示第三点指向第四点并有权重为2.图中的Inf表示的是无穷,说明这两个点在该方向上没有连接,记为无穷。无向图可以理解为双向图,道理相同。迪杰斯特拉算法算法的思想可以由一个四行表格来概括:对这样一个道路,我们想要找出0-4的最短道路是多长,我们可以用这样的算法:用visited记录走过的点,distance记录权重,parent记..
2020-08-18 21:06:28 334
原创 6-1 典型相关分析
典型相关分析由Hotelling提出,其基本思想和主成分分析非常相似。首先在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数;然后选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;如此继续下去,直到两组变量之间的相关性被提取完毕为止。被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。典型相关系数度量了这两组变量之间联系的强度。典型相关步骤:(可以假设符合正态分布)SPSS操作:1. 导入数据并确定数据类型为标度2.
2020-08-15 21:39:51 561
原创 7-1 多元线性回归分析
由于第六节有点不太懂 暂时先不发~~Part1:多元回归分析回归分析: 通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。(注意相关性不等于有因果关系)x是自变量,是用来解释y的相关变量(因为y就是因为自变量的改变而改变的变量)。我们我可以把x叫做解释变量,y叫做被解释变量。所以最后做出来的结果不仅要能够模拟出y,还要可以解释y的形成,这是解释的关系。有x,y之后,就要去判断两者的相关程度了,这里称之为回归分析的使命:A. 这些x(比如x1,x2…)是不是
2020-08-12 22:12:42 2131 1
原创 5-1 相关系数
一、皮尔逊相关系数协方差:指每个x与均值之差乘以每个y与均值之差的和除以总数(就是上面的Cov)其中在假设检验的第二步,一般我们用的最多的是正态分布,那怎样确定我们的数据符合正态分布呢?二、斯皮尔曼spearman相关系数定义:等级其实就是排序,从小到大排,相等的取算术平均根据公式可以直接得到相关系数。假设检验:三、两种相关系数的比较定序数据:用123表示差良优,用数字表示登记和次序的数据就是定序数据。学习课程来自清风老师,想找相关课程的可以去b站搜索,表格和流程图是自己整理的
2020-08-08 19:37:09 295
原创 4-1 拟合算法
1.最小二乘法就是找到一条曲线,使它离相对应的实际点的距离的平方和都很接近。一般不采取距离的绝对值之和 因为不好求导,不便计算。代码分析:clear;clcload data1 plot(x,y,‘o’) % 给x和y轴加上标签xlabel(‘x的值’) %自变量名ylabel(‘y的值’) %因变量名n = size(x,1); %n个数据k = (n*sum(x.*y)-sum(x)sum(y)) /(nsum(x.*x)-sum(x)*sum(x))b = (sum(x.*x).
2020-08-05 22:31:31 1529
原创 3-1 插值算法
插值算法:可以用于短期预测和估计未知数据(比如已知一月三月数据估计二月数据)编程:【常用】三次样条插值(这个实际上对数据要求更高)【常用】埃尔米特插值x = ‐pi:pi;y = sin(x);new_x= ‐pi:0.1:pi;p1 = pchip(x,y,new_x); % 分段三次埃尔米特插值p2 = spline(x,y,new_x); % 三次样条插值plot(x,y,‘o’,new_x,p1,‘r‐’,new_x,p2,‘b‐’) %画图,o表示用空心圆点标注数据点,r.
2020-08-03 21:18:38 221
原创 1-1 层次分析法
层次分析法一大问题就是主观性较强,不建议数模比赛中使用。看的课程是清风老师的数模课程,个人觉得讲得很详细,很不错(避开了本小白觉得很难的原理部分),可以关注“数学建模比赛交流”公众号。图片和笔记都是自己做的,转载请联系(?也不会有人转载吧edraw有水印是因为当时还不知道复制粘贴大法就直接导出了…有错的话欢迎指出!共同交流!(聆听大佬指教.jpg)...
2020-07-26 22:19:41 458
原创 我的第一篇博客
本人电科专业,数模菜鸟,今年想去国赛划划水,想找个地方记录自己学到的东西,以后学其他东西也会相应记录在这里。一开始还很犹豫,毕竟自己也不是很厉害,放博客在这里也怕误导别人,所以!有错的欢迎指出!我会改正的!现在主要是为数模国赛作准备,前几篇博客就都会与国赛相关,写博客也算是激励自己好好学习吧好啦不说了,发博客先~(有种自己又多了一个公众号的感觉????)...
2020-07-26 22:07:08 76
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人