汉诺塔 (http://baike.baidu.com/view/191666.htm) 的移动也可以看做是递归函数。
我们对柱子编号为a, b, c,将所有圆盘从a移到c可以描述为:
如果a只有一个圆盘,可以直接移动到c;
如果a有N个圆盘,可以看成a有1个圆盘(底盘) + (N-1)个圆盘,首先需要把 (N-1) 个圆盘移动到 b,然后,将 a的最后一个圆盘移动到c,再将b的(N-1)个圆盘移动到c。
请编写一个函数,给定输入 n, a, b, c,打印出移动的步骤:
move(n, a, b, c)
例如,输入 move(2, 'A', 'B', 'C'),打印出:
A --> B
A --> C
B --> C
如下
def move(n,a,b,c):
if n==1:
print a,'-->',c #这其实是只有一个圆盘需要从A到C的情况。所有递归,最终都是走到这一步。
return #这是结束递归,省略了None。没有这句的话,递归没办法结束。
move(n-1,a,c,b) #将A柱的n-1个盘移到B柱,这里毫无争议。注意形参顺序变化了。
print a,'-->',c #这句话才是第一个柱子的第n个圆盘移动到目标柱子。
move(n-1,b,a,c) #过渡柱子B上(n-1)个圆盘B递归移动到目标柱子C
move(4, 'A', 'B', 'C')