GIT统计代码量及IDEA Statistic统计解析

 GIT统计代码量

  •  Git统计个人提交代码行数

git log --format='%aN' | sort -u | while read name; do echo -en "$name\t"; git log --author="$name" --pretty=tformat: --numstat | awk '{ add += $1; subs += $2; loc += $1 - $2 } END { printf "added lines: %s, removed lines: %s, total lines: %s\n", add, subs, loc }' -; done
  •  Git统计项目总行数

git log  --pretty=tformat: --numstat | awk '{ add += $1; subs += $2; loc += $1 - $2 } END { printf "added lines: %s, removed lines: %s, total lines: %s\n", add, subs, loc }' -
  • 查看git上个人代码量(需要修改username!!!)

git log --author="username" --pretty=tformat: --numstat | awk '{ add += $1; subs += $2; loc += $1 - $2 } END { printf "added lines: %s, removed lines: %s, total lines: %s\n", add, subs, loc }' -
  • 查看时间范围内,个人代码量统计

git log --since="2021-01-08" --before="2021-01-14" --author="liuwei" \
--pretty=tformat: --numstat | awk '{ add += $1; subs += $2; loc += $1 - $2 } END { printf "新增行数: %s, 移除行数: %s, 总行数: %s\n", add, subs, loc }'
  • 查看仓库提交者排名前 5

git log --pretty='%aN' | sort | uniq -c | sort -k1 -n -r | head -n 5
  • 贡献者统计

git log --pretty='%aN' | sort -u | wc -l
  • 提交数统计

git log --oneline | wc -l

 Statistic统计

  1. idea按照Statistic插件
  2. 重启后执行statistic
  3. idea下方会显示Statistic以下列表统计框
  • Extension:文件扩展后缀名
  • Count:文件数量
  • Size SUM:文件大小
  • Size MIN:同类文件中最小文件的大小
  • Size MAX:同类文件中最大文件的大小
  • Size AVG:文件平均大小
  • Lines: 同类文件所有行数
  • Lines MIN:同类文件中行数最小
  • Lines MAX:同类文件中行数量大
  • Lines AVG:同类文件的平均行数

  • Total Lines :代码总行数(包括注释,空行)
  • Source Code Lines :源代码行数(不包括注释,空行)
  • Source Code Lines(%) :源代码行数百分比(Source Code Lines/Total Lines)
  • Comment Lines :注释行数
  • Comment Lines(%) : 注释行数百分比(Comment Lines/Total Lines)
  • Blank Lines : 空行数
  • Blank Lines(%) : 空行百分比(Blank Lines/Total Lines)
### 使用 AutoGPTQ 库化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经化的模型或者创建一个新的化器对象用于化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过化的模型以确保满足预期的质标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QC·Rex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值