数据结构之AVL树

文字介绍和图片来自http://www.cnblogs.com/skywang12345/p/3577479.html

1.AVL介绍

AVL树是高度平衡的而二叉树。它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。
这里写图片描述

2.AVL的实现

2.1 结点定义

//结点定义
    private class AVLNode {
        Key key;
        Value val;
        int h;
        AVLNode left,right;
        public AVLNode(Key k,Value v,int h) {
            key = k; val = v; left = null; right = null; this.h = h;
        }
    }

2.2 旋转

如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:
旋转示意图
上图中的4棵树都是”失去平衡的AVL树”,从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:
其他失去平衡的情况
上面的两张图都是为了便于理解,而列举的关于”失去平衡的AVL树”的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:

2.2.1 LL的旋转

LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:
LL
图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。

LL的旋转代码

/**
     * LL:左左对应的情况(左单旋转),LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。
     * @param p
     * @return 旋转后的根节点
     */
    private AVLNode LLrotation(AVLNode p) {
        AVLNode v = p.left;
        p.left = v.right;
        v.right = p;
        p.h = Math.max(height(p.left), height(p.right))+1;
        v.h = Math.max(height(v.left), height(v.right))+1;
        return v;
    }

2.2.2 RR的旋转

理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:
RR
图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。

RR的旋转代码

/**
     * RR:右右对应的情况(右单旋转)。
     * @param p
     * @return 旋转后的根节点
     */
    private AVLNode RRrotation(AVLNode p) {
        AVLNode v = p.right;
        p.right = v.left;
        v.left = p;
        p.h = Math.max(height(p.left), height(p.right))+1;
        v.h = Math.max(height(v.left), height(v.right))+1;
        return v;
    }

2.2.3 LR的旋转

LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:

LR
第一次旋转是围绕”k1”进行的”RR旋转”,第二次是围绕”k3”进行的”LL旋转”。
LR的旋转代码

/**
     * LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。先RR再LL
     * @param p
     * @return
     */
    private AVLNode LRrotation(AVLNode g) {
        AVLNode p = g.left;
        g.left = RRrotation(p);
        return LLrotation(g);
    }

2.2.4 RL的旋转

RL是与LR的对称情况!RL恢复平衡的旋转方法如下:
RL
第一次旋转是围绕”k3”进行的”LL旋转”,第二次是围绕”k1”进行的”RR旋转”。

RL的旋转代码

/**
     * RL失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。先LL再RR
     * @param p
     * @return
     */
    private AVLNode RLrotation(AVLNode g) {
        AVLNode p = g.right;
        g.right = LLrotation(p);
        return RRrotation(g);
    }

2.2.5 LL,RR,LR,RL 调整rebalance方案

代码

/**
     * 调整二叉树使之平衡
     * @param p
     * @return
     */
    private AVLNode rebalance(AVLNode p) {
        if(p == null) return null;
        //判断以p为根节点的左右子树是否平衡
        if(Math.abs(height(p.left)-height(p.right))<2)
            return p;
        if(height(p.left)>height(p.right)) {
            //若AVL左子树失去平衡,则进行相应的调节
            if(height(p.left.left) - height(p.right) == 1)  
                p = LLrotation(p);//LL
            else 
                p = LRrotation(p);//LR
        }
        else {
            //若AVL右子树失去平衡,则进行相应的调节
            if(height(p.right.right) - height(p.left) == 1) 
                p = RRrotation(p);//RR
            else 
                p = RLrotation(p);//RL
        }
        return p;
    }

2.3 插入

//插入
    public void insert(Key key,Value val) {
        if(key == null) return;
        if(val == null) delete(key);
        root = insert(root,key,val);
    }

    private AVLNode insert(AVLNode p,Key key,Value val) {
        if(p == null) { p = new AVLNode(key,val,1); return p;}
        int cmp = key.compareTo(p.key);
        if(cmp < 0) 
            p.left = insert(p.left,key,val);
        else if(cmp > 0) 
            p.right = insert(p.right,key,val);
        else {
            p.val = val; return p;
        }
        p.h = Math.max(height(p.left), height(p.right)) + 1;
        p = rebalance(p);
        return p;
    }

2.4 删除

//删除
    public void delete(Key key) {
        root = delete(root,key);
    }

    private AVLNode delete(AVLNode p,Key key) {
        if(p == null || key == null) return null;
        int cmp = key.compareTo(p.key);
        if(cmp < 0) 
            p.left = delete(p.left,key);
         else if(cmp > 0) 
            p.right = delete(p.right,key);
         else {
            //删除
            if(p.right == null) {
                p = p.left;
            }
            else {
                //选择右子树最小结点替换待删除结点
                AVLNode rmin = min(p.right);    
                p.key = rmin.key; p.val = rmin.val;
                p.right = delete(p.right,rmin.key);
            }
        }

        if(p != null) {
            p.h = Math.max(height(p.left), height(p.right)) + 1;
            p = rebalance(p);
        }
        return p;
    }

3 完整代码

package xwq.dt;


public class AVLTree<Key extends Comparable<Key>,Value> {
    private AVLNode root;
    //结点定义
    private class AVLNode {
        Key key;
        Value val;
        int h;
        AVLNode left,right;
        public AVLNode(Key k,Value v,int h) {
            key = k; val = v; left = null; right = null; this.h = h;
        }
    }

    public AVLTree() {
        root = null;
    }

    //查找
    public Value find(Key k) {
        AVLNode result = find(root,k);
        if(result != null) return result.val;
        return null;
    }

    private AVLNode find(AVLNode p,Key k) {
        if(k == null) return null;
        while(p != null) {
            int cmp = k.compareTo(p.key);
            if(cmp<0) p = p.left;
            else if(cmp>0) p = p.right;
            else return p;
        }
        return null;
    }

    //插入
    public void insert(Key key,Value val) {
        if(key == null) return;
        if(val == null) delete(key);
        root = insert(root,key,val);
    }

    private AVLNode insert(AVLNode p,Key key,Value val) {
        if(p == null) { p = new AVLNode(key,val,1); return p;}
        int cmp = key.compareTo(p.key);
        if(cmp < 0) 
            p.left = insert(p.left,key,val);
        else if(cmp > 0) 
            p.right = insert(p.right,key,val);
        else {
            p.val = val; return p;
        }
        p.h = Math.max(height(p.left), height(p.right)) + 1;
        p = rebalance(p);
        return p;
    }

    //删除
    public void delete(Key key) {
        root = delete(root,key);
    }

    private AVLNode delete(AVLNode p,Key key) {
        if(p == null || key == null) return null;
        int cmp = key.compareTo(p.key);
        if(cmp < 0) 
            p.left = delete(p.left,key);
         else if(cmp > 0) 
            p.right = delete(p.right,key);
         else {
            //删除
            if(p.right == null) {
                p = p.left;
            }
            else {
                //选择右子树最小结点替换待删除结点
                AVLNode rmin = min(p.right);    
                p.key = rmin.key; p.val = rmin.val;
                p.right = delete(p.right,rmin.key);
            }
        }

        if(p != null) {
            p.h = Math.max(height(p.left), height(p.right)) + 1;
            p = rebalance(p);
        }
        return p;
    }

    /***************************************************************************
        *  AVL tree helper functions.
     ***************************************************************************/
    /**
     * 调整二叉树使之平衡
     * @param p
     * @return
     */
    private AVLNode rebalance(AVLNode p) {
        if(p == null) return null;
        //判断以p为根节点的左右子树是否平衡
        if(Math.abs(height(p.left)-height(p.right))<2)
            return p;
        if(height(p.left)>height(p.right)) {
            //若AVL左子树失去平衡,则进行相应的调节
            if(height(p.left.left) - height(p.right) == 1)  
                p = LLrotation(p);//LL
            else 
                p = LRrotation(p);//LR
        }
        else {
            //若AVL右子树失去平衡,则进行相应的调节
            if(height(p.right.right) - height(p.left) == 1) 
                p = RRrotation(p);//RR
            else 
                p = RLrotation(p);//RL
        }
        return p;
    }

    /**
     * LL:左左对应的情况(左单旋转),LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。
     * @param p
     * @return 旋转后的根节点
     */
    private AVLNode LLrotation(AVLNode p) {
        AVLNode v = p.left;
        p.left = v.right;
        v.right = p;
        p.h = Math.max(height(p.left), height(p.right))+1;
        v.h = Math.max(height(v.left), height(v.right))+1;
        return v;
    }

    /**
     * RR:右右对应的情况(右单旋转)。
     * @param p
     * @return 旋转后的根节点
     */
    private AVLNode RRrotation(AVLNode p) {
        AVLNode v = p.right;
        p.right = v.left;
        v.left = p;
        p.h = Math.max(height(p.left), height(p.right))+1;
        v.h = Math.max(height(v.left), height(v.right))+1;
        return v;
    }

    /**
     * LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。先RR再LL
     * @param p
     * @return
     */
    private AVLNode LRrotation(AVLNode g) {
        AVLNode p = g.left;
        g.left = RRrotation(p);
        return LLrotation(g);
    }

    /**
     * RL失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。先LL再RR
     * @param p
     * @return
     */
    private AVLNode RLrotation(AVLNode g) {
        AVLNode p = g.right;
        g.right = LLrotation(p);
        return RRrotation(g);
    }



    /***************************************************************************
     *  Utility functions.
     ***************************************************************************/
    public int height() {
        return height(root);
    }

    private int height(AVLNode p) {
        if(p==null) return 0;
        return p.h;
    }

    public Key minKey() {
        AVLNode min = min(root);
        if(min == null) return null;
        return min.key;     
    }

    private AVLNode min(AVLNode p) {
        if(p == null) return null;
        while(p.left != null)
            p = p.left;
        return p;
    }

    public Key maxKey() {
        AVLNode max = max(root);
        if(max == null) return null;
        return max.key;
    }

    private AVLNode max(AVLNode p) {
        if(p==null) return null;
        while(p.right != null)
            p = p.right;
        return p;
    }

    public boolean isBalance() {
        return isBalance(root);
    }

    private boolean isBalance(AVLNode p) {
        if(p == null) return true;
        if(Math.abs(height(p.left)-height(p.right))>=2)
                return false;
        return isBalance(p.left) && isBalance(p.right);
    }

    /***************************************************************************
        *  AVL tree 遍历 functions.
     ***************************************************************************/
    //前序遍历
    public void preorder() {
        System.out.println("preorder: ");
        preorder(root);
        System.out.println();
    }
    //中序遍历
    public void inorder() {
        System.out.println("inorder: ");
        inorder(root);
        System.out.println();
    }
    //后序遍历
    public void postorder() {
        System.out.println("postorder: ");
        postorder(root);
        System.out.println();
    }

    private void inorder(AVLNode p) {
        if(p == null) return;
        inorder(p.left);
        System.out.print(p.key+" ");
        inorder(p.right);
    }

    private void preorder(AVLNode p) {
        if(p == null) return;
        System.out.print(p.key+" ");
        preorder(p.left);
        preorder(p.right);
    }

    private void postorder(AVLNode p) {
        if(p == null) return;
        postorder(p.left);
        postorder(p.right);
        System.out.print(p.key+" ");
    }

}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值