题目描述:给定3个参数,N,M,K,怪兽有N滴血,等着英雄来砍自己,英雄每一次打击,都会让怪兽流失[0,M]的血量,流失的值每次在[0,M]上等概率的获得一个值,求K次打击之后,英雄把怪兽砍死的概率。
way:概率=砍完K次之后存活(还有血)的掉血方案数/砍K次之后的所有的掉血方案数pow(M+1,K)。如果砍到某刀的时候血量已经掉完了,那么后面怎么砍都是可以砍死的,后面的方案数是pow(M+1, 剩余可砍的次数)。
//怪兽还剩下hp点血
//还有rest刀可以砍
//每次的伤害在[0,M]范围内
#include<iostream>
#include<vector>
using namespace std;
//怪兽还剩下hp点血
//还有rest刀可以砍
//每次的伤害在[0,M]范围内
long long process(int hp, int rest, int M)
{
//如果砍到最后还没死就是砍不死的方案
if(rest==0) return hp<=0?1:0;
if(hp<=0)
{
return pow(M+1,rest);
}
long long ways=0;
for(int blood=0; blood<=M; blood++)
{
ways+=process(hp-blood,rest-1,M);
}
return ways;
}
double killMonsterPosibility(int hp, int M, int K)
{
if(hp<1 || M<1 || K<1)
{
return 0;
}
return (double)process(hp, K, M)/pow(M+1,K);
}
way2:dp版。
double dpWay(int N, int M, int K)
{
//N为hp
if(N<1 || M<1 || K<1)
{
return 0;
}
//虽然hp理论上可以小于0,但是在dp中没有小于0的下标,只是没有表示,但是是有的,在ways+=pow(M+1,rest)中隐式的计算了.
vector<vector<long long>>dp(N+1, vector<long long>(K+1));
dp[0][0]=1;
for(int rest=1; rest<=K; rest++)
{
dp[0][rest]=pow(M+1,rest);
for(int hp=1; hp<=N; hp++)
{
long long ways=0;
for(int blood=0; blood<=M; blood++)
{
if(hp-blood>=0)
{
ways+=dp[hp-blood][rest-1];
}else
{
ways+=pow(M+1, rest-1);
}
}
dp[hp][rest]=ways;
}
}
return (double)dp[N][K]/(double)(pow(M+1,K));
}