AI大模型到底有多烧钱?
或许最有发言权的就是OpenAI了,2022年其亏损大约翻了一番,达到约5.4亿美元。据悉,Altman曾私下建议,OpenAI可能会在未来几年尝试筹集多达1000亿美元的资金,以实现其开发足够先进的通用人工智能。
国内的AI公司也不例外。不完全统计,国内头部AI公司智谱AI、百川智能、零一万物、MiniMax和月之暗面,从去年下半年至今已完成了总额超30亿美元的融资,当然,他们也公开表示,在通往AGI的路上,这些钱还远远不够。
然而,商业世界没有人是愿意做慈善、搞科研的,甚至没人比企业家、投资人更看中落地变现和投资回报比。那么在烧够钱之后,企业该如何通向赚麻了?在业内人士看来,他们逃不过以下几种变现模式。
“有求必应”的小助手-订阅服务
订阅服务是目前AI大模型公司商业化的最普遍方式,即采用按tokens或按月、按调用次数收费的订阅模式,为客户提供大模型应用的访问权限。许多AI大模型公司为此推出了各式各样的AI应用。
在通用AI应用方面,具有代表性的有OpenAI的ChatGPT、百度的文心一言、阿里的通义千问、科大讯飞的讯飞星火等。这些应用均扮演了对话问答助手的角色,可以为客户提供文本生成、信息检索、对话交互等服务。
在创意工具型AI应用方面,OpenAI推出了大火的文生视频工具Sora,国内比较有代表性的有文生图像的文心一格、剪映Dreamina等。
另外,也有公司将目光聚集在教育、医疗等专业领域,做垂直大模型。例如专注于零售、物流领域的京东言犀大模型;深耕医疗领域的京医千寻;还有教育领域的网易AI教师“小P老师”等。
拿ChatGPT举例,目前有两种计费模式,即包月和按tokens收费。包月模式下给用户提供ChatGPT Plus的使用权限,费用为20美元/月。按tokens收费模式下为用户提供多种API接口,费用为每1000tokens收费0.002美元。
“装备附魔”-增值服务
目前,许多互联网巨头公司将大模型集成到自己现有的产品和服务中,为自己的传统业务“镀金”,利用AI实现高屋建瓴。
比如百度文库文档助手、淘宝问问、New Bing搜索引擎、腾讯会议AI小助手、WPS AI助手等。通过AI为传统业务赋能,来更多地吸引用户,增加用户粘性并带动营收增长。
这里面比较有代表性的是微软基于GPT-4技术开发的AI升级版必应搜索引擎New Bing。利用AI的“附魔”,New Bing可以为客户提供更准确的搜索结果并能理解更复杂的、更模糊的查询指令,此外,New Bing还具备文生图像的功能。
“拎包入住”-MaaS(模型即服务)
MaaS的出现大大解决了大模型落地与推广的难题。
MaaS模式是一种云计算厂商将AI大模型作为一种产品提供给用户使用的商业模式,云厂商可以将预先训练好的大模型“打包”,通过简单的应用程序接口(API或SDKs),对外提供服务,虽然提供的是API,但是本质上调用的是模型。
用户们可以按照自身的业务需求,直接调用大模型,将自己的需求嵌入已有的应用和服务中进行微调,即可让大模型为自己的业务赋能。
这种方式使得用户不需要过多了解模型的技术细节,也不用付出研发成本,只需像调用云能力一样,直接调用服务。对大模型公司来讲,此方式解决了大模型变现难的问题,同时也可吸纳用户们的使用数据来“反哺”自身,利于大模型的升级和迭代,可谓是“双赢”。
目前,文心、通义、盘古等大模型厂商,基本都在提供此类服务,比如阿里的魔搭社区,百度的飞桨等等。
2022年,阿里云建立了ModelScope社区(魔搭社区),汇集开源开放的优质预训练模型,并提供了API调用模型,极大地方便了用户的使用。之后推出的大模型调用工具ModelScopeGPT,用户可以一键发送指令调用魔搭社区中其他的人工智能模型,从而实现大小模型的共同协作。
“创意工坊”-开源模式
开源是目前计算机领域一种普遍的软件开发模式,大量开发者在协议许可的情况下对开源代码进行修改,并集成到已有的系统中,为软件和系统增加新功能和特性。
AI大模型公司通过将计算机程序、软件的源代码等内容公开,并根据开源协议进行分发,培养大量的开发者。
开源本身是免费的,但涉及到后续的数据训练、数据监督、数据微调等等,大模型公司则有较为明朗的收费模式。
在开源的模式下,可以快速共享好成果,让好的成果快速培养社区,下游用户利用开源成果,可以快速搭建自己的应用系统。目前,国外有Apache MXNet、Caffe/2+PyTorch、TensorFlow等;国内有OpenI启智平台、百度的PaddlePaddle等。同时,智谱AI、阿里通义都在强调开源的价值。
拿TensorFlow举例,TensorFlow是由Google开发的开源机器学习框架,主要用于深度学习和神经网络的建模、训练和部署。
TensorFlow为开发者提供了丰富的API、庞大的社区、分布式计算和GPU加速功能,同时可以兼容多种操作系统。
AI Agent(人工智能体)
2024年3月13日,由OpenAI投资的机器人公司Figure发布了一段视频demo,视频里的机器人,不仅可以与人进行对话交互,理解人类的意图,同时还能理解人的自然语言指令进行抓取和放置行为,而且还拥有记忆力。这意味着AI度尽劫波终于修成了“肉身”。
很多人认为AI Agent是AI大模型公司商业化的最终形态,它意味着大模型在真正的应用层面走进千家万户。
大模型公司的商业化道路还处于探索阶段,如同每种新技术的初始阶段,限于成本等因素,总是B端客户愿意为效果买单,但目前B端应用开发的阻力很大,B端市场有更多对于AI安全性的考量。
是继续加大力度寻求scaling law的规模化,还是基于现有快速演进的大模型加速商业化,也是摆在大模型公司面前的一道选择题。
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。