大模型AI的挑战和机会

图片

华先胜,现任特斯联集团CTO,IEEE Fellow,ACM Distinguished Scientist。

2008年获MIT技术评论“全球35个35岁以下杰出青年创新者”称号(TR35)。

1996年和2001年毕业于北京大学数学学院,分别获学士和博士学位;之后分别工作于微软亚洲研究院,微软美国必应搜索引擎,以及微软美国研究院,从事多媒体、计算机视觉和机器学习方面的研发工作;2015年4月加入阿里巴巴,先后任研究员,集团副总裁,达摩院城市大脑实验室主任。他的研究兴趣在大规模人工智能算法和系统领域,并深入应用于各行业。

华博士在国际主流会议和期刊上发表论文300余篇,100余项授权专利,曾担任ACM Multimedia等顶级学术会议的程序委员会主席和大会主席,并获得多个国际会议及期刊的最佳论文奖。

图片

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

图片

尊敬的各位嘉宾、校友以及在座的朋友们:

大家好!

去年到今年,大家应该也注意到了,「通用人工智能」这个词火得不行,AI技术取得了显著进展,这背后主要归功于像ChatGPT这样的应用和它背后的技术,包括语言模型、视觉生成模型和多模态模型。

它们的出现真是让人眼前一亮,感觉AI的能力往前跨越了一大步。

GPT刚出来时引起很大轰动,短短两个月时间突破1亿的用户增长速度,网飞却用了18年才达到这样的用户量。

此外,AI在各种考试中的表现,有的科目做得挺好,有的就差点意思。

比如高中数学竞赛,AI可能就不太在行。但像AP考试中偏知识型的AI的表现就不错。

人们普遍认为AI开启了新纪元,各种声音都有,技术派、硬件派、软件派、投资派,各有各的说法,而且有些听起来还挺吓人的,比如风险啊,颠覆啊之类的。

AI技术的发展也带来了不少争议与挑战。有人担心它可能带来的颠覆性风险,我们当然希望AI能带来革新,同时也要对人类产生正面影响。

数据隐私、安全性、可解释性等问题,不仅关系到 AI 的发展,也关系到我们每个人的切身利益。

图片

现在,大模型成了各家公司的必争之地,不管是互联网大厂还是初创公司,都在卷。

大厂可能还扛得住,毕竟财大气粗,初创公司就难多了。

除了模型本身,还有基础设施建设,比如GPU集群,搞不明白是真投入还是凑热闹,这其中真假难辨,且造价高昂。应用层的竞争倒是可以更激烈一些,可能这里头的机会更多些。

人工智能的发展“势不可挡”,但之前也有人这么说过,关键在于我们怎么对待它,如果处理不当,人工智能可能会成为我们的阻碍;反之,则可能成为推动我们前进的力量。

是让它成为推动的「势」,还是阻碍的「挡」?关键在于我们如何对待和利用这项技术。

未来竞争不是人和AI之间,而是懂AI、会用AI的人之间的竞争,而不会使用AI的人很可能没有多少竞争的机会。还有更深层面的竞争,例如,利用AI技术提升了自身智慧和能力的人,恐怕是未来最具有竞争力的人。

给大家分享一些AI对产业产生不可替代价值的例子,在工业场景中,我做过的项目,比如图像搜索、智慧城市、三维重建、生产线质量检测,甚至鉴定白酒真伪……通过自动视觉分析提高生产线产品质量检测的效率和准确率是比较典型的例子。这些都是AI技术能够解决实际问题的例证,实打实应用。新冠疫情期间,我们还用AI分析CT影像,辅助诊断,成效也得到了医院和相关管理部门的认可,系统的第一段代码还被国家博物馆和中国科技馆收藏。

大模型的出现,让许多行业都看到了被AI重塑的可能,但这还没规模化实现。

原因有很多,可能是模式问题。各行业的智能化需求很多,技术虽然还在不断进步,但已经足够丰富,而且其中不少技术也能解决其中很多的问题,但这个事情并没有规模化的发生。比如医疗影像分析,智慧城市,工艺优化,生产管理等技术虽然听起来很美好,但实际应用并不广泛。这背后可能涉及商业和协作模式的问题。

近期基于大模型技术也做了很多尝试,像智能机器人、超级智慧园区、领域大模型支持企业办公和城市经济管理、全AI交互展厅,还有可控视觉内容生成,都是在尝试推动AI与行业的深度融合。

但是,我们必须面对一个现实问题:即便技术日益成熟,真正的规模化的商业化应用仍然有限。很多AI公司特别是创业公司面临生存挑战。为什么会这样?值得我们深入思考。其中非常重要的三个要素是:是否能创造不可替代的价值,是否可以规模化,以及是否有竞争力(我常戏称为口诀“一不可一可有”)。这三条缺了哪一条都有可能面临相应的巨大挑战。

图片

未来,AI会更加关注于提升人的能力,让生活更美好,这可以叫「向内」的AI,或者说是「内外兼修」的AI。

大部分AI技术,赋能人类的时候,是以外部工具形式出现的,没有这些工具了,人也没有这些能力了。向内的AI不同,它是提升人类自身的能力,离开AI,人仍然具有这些能力,例如AI教育提升学习的效率和效果,AI运动分析提升运动员的竞技水平。

无论是运动分析、教育,还是其他AI向内的领域,AI不再仅是外部工具,而是让人自身变得更为强大、更为美好。

大模型AI最近火热,但其技术和应用的发展面临很多挑战,例如研发和使用的高门槛、中美差距、芯片自主问题、价值体现、模型的安全性、能源、人机关系,以及还有很多大模型热潮中似是而非的认知或多或少影响大模型AI的发展和应用。

但是,尽管挑战很多,我们在模型、系统和应用层都还有技术创新和产业落地的机会,关键是根据自身的条件和优势,找到适合自己的位置。基础模型层面,有足够资金支持的,可以继续去卷Scaling Law,尽管可能难以打持久战,还是应该有人去攻的;捉襟见肘的可以去看模型本身可以创新的地方,例如引入因果,而非只靠相关性;在领域模型和系统层面,可以创新和落地更多百行千业,结合有门槛的行业know-how,构建各个领域的大模型能力,创造各自场景中的不可替代的价值;在应用层,技术门槛可能相对低一些,但在产品设计和运营方面如果有优势,也有很大的创新空间。不过卷后两层需要注意到是,要做到基础大模型能力不断增强的时候,你仍然有存在的价值。

总之,AI势不可挡,但我们要思考如何让它为人类带来正向影响,如何确保AI服务于人类,而不是替代人类。如何在人机共存的世界中,保持人类的不可替代性,人类仍然处在主宰地位。我们应提升自身能力,与AI协同工作,共同创造一个人机共存的未来。

最后,我想强调一点:**不仅是所有AI系统可以用大模型AI技术重做一遍,而是所有的系统都可以用大模型AI技术改写一遍。**AI将深刻影响各行各业,这不仅意味着技术上的革新,更代表着一种思维模式、工作模式、生活模式的转变 — 我们应该如何处理人工智能与人类的关系?关于这些问题的思考,我有一个TedX演讲,大家有兴趣可以参考TedXHuangpu演讲:智能时代,人类还是万物之灵吗?

总结来说,AI技术正在改变世界的每一个角落,但它的发展道路并非一帆风顺。我们需要深刻理解其潜力与局限,找到合适的商业模式和应用场景来最大化其价值。同时,我们也应积极探讨人工智能如何更好地服务于人类发展和社会进步。

在这个智能时代,提升自己,用好AI,才是关键。

希望大家都能在AI的浪潮中找到自己的位置。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值