引言
《How to build a Career in AI》这本小册子,是吴恩达写的。经优秀前辈建议,结合自己学习和工作经历,进行了中文精译。这本小册子是吴恩达写给想要从事AI行业或者刚入门不久的新人。精译严格遵循原文,包括目录结构、图片和超链,全部内容放在个人github上。
1整体结构和内容摘要
这本小册子分为五块,分别是**“前言”、“学习”、“项目”、“工作”和“后续”,针对想要从事AI工作或者刚进入AI行业**的新人,作者分享了一些方法论。当年我对AI,准确来说,对“机器学习”领域的体系建立,最受益的便是吴恩达当时写的另一本小册子《Machine Learning Yearning》。现在精译的这本小册子,希望能让更多人收获满满。
1.1 前述
在这一部分,作者主要介绍AI编程将会是新时代基本素养,各行各样都会从中受益。以数据为驱动,很多行业通过AI技术,如机器学习、深度学习,得到非常有帮助的决策,AI相关的编程将会像之前的软件编程、读写文字一样,成为人的基本素养。在AI行业建立职业生涯,将会经历三个阶段:学习、做项目和工作求职。
1.2 学习
学习阶段,要注重基础,根据具体的主题选择,如“机器学习”、“深度学习”、“与机器学习相关的数学”等。可以在线上社区,获取优质的课程成体系地学习。从坚持小的事情开始,每天养成习惯。如果还想要继续深入学习,最好选择一个细分的子领域,如“自然语言处理”、“计算机视觉”或者“概率图模型”等,如果会AI技术之外,还会软件开发,是非常有优势的。此外,不要太担心AI背后的数学,现在AI相关的算法实现越来越成熟,开箱即用,只要有些较浅的理解就可以有效地实践AI技术。当然了解更多的数学知识总是更好的。
👉[CSDN大礼包🎁:《
How to build a Career in AI
》免费分享(安全链接,放心点击)]👈
1.3 项目
在实践项目阶段,首先确定AI要解决的问题,即想让AI解决哪些范围的问题。你可以先通过与具体领域专家咨询现状来确定问题,然后集思广益寻找AI解决方案,随后评估成本和收益,确定好标准和指标反映问题和解决效果,最后预算所需资源。确定AI解决范围之后,要找到那些有助于你实现职业目标的项目。建议使用“准备、射击、瞄准”的方式,在实践中不断调整。最终形成能表明你技术成长的项目路径轨迹。
1.4 工作
学习了AI技术基础,有了相应的项目路径之后,开始寻找工作。建议不要同时“转岗位”和“转行业”。克服对未知的恐惧,列好应对可能出现情形的计划。提前找到目标公司或者目标岗位的人,非正式地约他们了解实际情况,因为AI发展日新月异,不同公司对于同一岗位做的事情可能有很大的不同。之后通过正式面试寻求offer,建议多打听团队主管和同事,找到适合自己的工作
1.5 后续
建立AI职业生涯,多利用线上社区资源、身边人际资源,不断自律地学习、同时要有**“利他主义”的沟通交流和分享**。不要怀疑自己的能力,哪怕觉得自己还不够强大,也要尽量帮助身后的人。人生短短三万天,让每一天都有价值。
2 本土化思考
2.1 关于国内AI行业思考
想要在国内进入AI行业或者转AI技术职位,不管在学习、工作和求职方面,吴恩达这套方法论同样非常有效。只是国内目前AI行业或者AI公司的商业模式和盈利能力并不是很乐观,这一点还是需要考量的。如果你比较喜欢稳定的、安稳的、风险低的工作,不喜欢持续终身学习、持续面对新技术新问题的变革,就需要认真考虑。
2.2 关于国内算法工程师思考
国内的算法工程师,也包括国内技术氛围,个人印象中,偏好于“花拳绣腿”,喜欢“多快好省”,对数据分析不太重视,身边不乏有很多整日复现新paper,git clone新仓库,都不愿意哪怕花一点点时间来看看训练数据到底长什么样,模型预测不好的case到底是哪些,数据层面是因为什么。当然这一点也是与“OKR”、“KPI”等绩效管理模式有关。如果你是那种做事风格踏实的,建议寻找相对更适合自己的团队、主管和同事。
3事业观思考
3.1 “事业观”可以解决内耗
个人认为事业观可以解决内耗。相信有很多人在“奋斗”和“躺平”之间内耗。其实,想想自己此生到底想建立怎样的事业。跟随自己的内心,奋斗就奋斗得轰轰烈烈,躺平就躺平得心安理得。每个人的人生都是成功的。只要自己觉得幸福快乐,什么都是“浮云”。
3.2 形成并坚守“事业观”
明确自己此生想建立的事业,然后坚持下去就好了。所以跟随自己内心很重要。如果不是真实的内心,是不可能坚持下去的。强行坚持只会让自己越来越内耗。仅以经济利益为动力的事业观不长久,如果工作本身不符合内心的声音,可能也不会很开心。
4
结语
建立AI职业生涯,吴恩达这本小册子干货满满。人生终究是给自己过的,如果内心真的喜欢AI行业,热爱AI技术,就去做吧。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓