💥💥💥💥💞💞💞💞💞💞欢迎来到凤凰科研社博客之家💞💞💞💞💞💞💥💥💥💥
✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码 论文复现 程序定制 期刊写作 科研合作 扫描文章底部QQ二维码。
🍎个人主页:青龙科研社
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(青龙科研社版)
⛳️关注CSDN青龙科研社,更多资源等你来!!
⛄一、SVM植物叶片病害检测(含准确率)
SVM(Support Vector Machine,支持向量机)在植物叶片病害检测中的应用,通常基于机器学习和图像处理技术。其原理和流程包括以下几个步骤:
1 数据采集与预处理:
收集健康的和患有不同病害的叶片图像作为训练和测试数据。
数据预处理可能包括裁剪、归一化、增强对比度等,以便于后续特征提取。
2 特征提取:
利用颜色直方图、纹理特征(如GLCM,灰度共生矩阵)、形状特征(如面积、周长)等来描述叶片的健康状况。
对每个特征进行降维,减少维度带来的计算复杂性。
3 构建模型:
将提取的特征映射到高维空间,并构建一个超平面来进行二分类或多分类决策。
SVM的目标是找到最大化类别间隔(Margin)的超平面,同时考虑一些边界的特殊情况(如软间隔)。
4 训练与优化:
使用训练数据集训练SVM模型,通过调整参数(如C核函数参数)寻找最优解。
使用交叉验证防止过拟合并评估模型性能。
5 叶子病害检测:
对新获取的叶片图像应用相同的特征提取和模型,然后进行预测。
根据预测标签判断是否患病或病害程度。
6 准确率评估:
使用测试数据集来评估模型的性能,计算真阳性(TP)、真阴性(TN)、假阳性和假阴性率,进而得到精确度、召回率和F1分数等指标,确定准确率。
⛄二、部分源代码和运行步骤
2.1 部分代码
clc all
2.2 通用运行步骤
(1)直接运行main.m即可一键出图