问题:有1元,5元,10元,50元,100元,500元的硬币各C1,C5,C10,C100,C500个,用这些硬币支付A远,最少需要多少硬币?
1.0<=C<=10e10;
2.0<=A<=10e9;
- 贪心算法,如其名字,对于每次的硬币选择我均要求最好,即遵循最优策略。此题的最优策略便是“优先选取面值大的硬币使用”。
- 下面我们思考代码所需部分:
- 1)变量:
- 存储硬币面值(coin[6])
- 存储相应面值硬币个数(C[6])
- 记录支付的钱数(A)
- 记录所需硬币个数(sum)
- 1)变量:
2)实现主要代码块(硬币选择)
遵循最优策略,我们每次尽可能多的选取大面值硬币,即选择t = min(A /coin[i],C[i])个硬币,计算剩余待支付面值A,重复上述步骤。很明显可以通过循环或者递归来实现,这里我贴出循环的方法。
#include <iostream>
#include<algorithm>
using namespace std;
int main()
{
int coin[6] = { 1,5,10,50,100,500 };//存储硬币的大小
int C[6];//存储硬币的个数
for (int i = 0; i < 6; i++) {
cin >> C[i];
}
int A;
cin >> A;
int sum = 0;//记录所需硬币个数
for (int i = 5; i >= 0; i--) {
int t = min(C[i], A / coin[i]);
A -= t * coin[i];
sum += t;
}
cout << sum;
}