用循环队列解迷宫问题

/***********************************************************************************
  队列是一种先进先出的机制,用队列来解迷宫问题的思想如下:

  将起点标记为已走过并入队列;
  while (队列非空)
  {
        出队一个点p;
    
        if (p这个点是终点)
        {
            break;
        }
    
        否则沿下,右,上,左四个方向探索相邻的点
        if (和p相邻的点有路可走,并且还没走过)
        {
            将相邻的点标记为已走过并入队,它的前趋就是刚出队的p点;
        }
    }
    
    if (p点是终点)
    {
        while (p点有前趋)
        {
            打印p点的坐标;
            p点 = p点的前趋;
        }
    }
    else
    {
        没有路线可以到达终点;
    }

***************************************************************************************/

#include <stdio.h>

#define MAX_ROW    8
#define MAX_COL    8
#define MAX_LEN (MAX_ROW * MAX_COL)

#define false    0
#define true    1

typedef struct point
{
    int row;
    int col;
}Point;

Point queue[MAX_LEN];
unsigned int head = -1;
unsigned int tail = -1;
unsigned int flag = 0;

int maze[MAX_ROW][MAX_COL] = {
    0, 1, 0, 1, 0, 0, 1, 0,
    0, 0, 1, 0, 1, 0, 0, 1,
    0, 0, 0, 0, 1, 1, 1, 1,
    1, 0, 1, 0, 1, 0, 0, 1,
    1, 0, 1, 0, 0, 1, 1, 1,
    1, 1, 1, 0, 0, 0, 0, 1,
    0, 0, 0, 0, 0, 1, 1, 1,
    1, 1, 1, 1, 0, 0, 0, 0,
};

Point FootPrints[MAX_ROW][MAX_COL] = {
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
    {{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}},
};

void Print_Maze(void)
{
    int i = 0, j = 0;
    for(i = 0; i < MAX_ROW; i++)
    {
        for(j = 0; j < MAX_COL; j++)
        {
            printf("%2d", maze[i][j]);
        }
        printf("\n");
    }

    printf("*************************************\n");
}

int QueueEmpty(void)
{
    if(tail == head)
    {
        head = -1;/*如果是空对列,则置头尾都为-1,重新开始出入队列*/
        tail = -1;

        return    true;
    }

    return    false;
}

int QueueFull(void)
{
    if((tail+1 == head) || ((head == 0) && (MAX_LEN-1 == tail)))
    {
        return    true;/*队列满的时候有两种情况:1,可以理解为未出对列,直接入满;2,在中间位置入队列反超导致满*/
    }
    else
    {
        return    false;
    }
}

int InQueue(Point p)
{
    if(QueueFull())/*队列满的时候*/
    {
        return    false;
    }

    if(tail == -1)/*队列为空的标识,则置head,tail都为0,又从队列首地址开始出入队列操作*/
    {
        head = 0;
        tail = 0;
    }
    else if(MAX_LEN-1 == tail)
    {
        tail = 0;
    }

    queue[tail++] = p;/*入队列*/

    return    true;
}

int OutQueue(Point *pPoint)
{
    if(QueueEmpty())
    {
        return false;
    }

    if(head == MAX_LEN-1)
    {
        head = 0;
    }

    *pPoint = queue[head++];

    return    true;
}

void Print_Foot(void)
{
    Point p = {MAX_ROW-1, MAX_COL-1};

    while(FootPrints[p.row][p.col].row != -1)
    {
        printf("{%d, %d} \n", p.row, p.col);
        p = FootPrints[p.row][p.col];
    }

    printf(" seccess out ! \n");
}

void VisitPoint(int row, int col, Point p)
{
    Point tempPoint = {row, col};

    maze[row][col] = 2;/*访问的点要标记为2*/
    InQueue(tempPoint);/*访问的点要入队列*/

    FootPrints[row][col] = p;/*当前点的坐标记录上一个点的坐标*/
}

int main(void)
{
    Point p;
    Point first = {0, 0};/*设定出发点*/
    maze[first.row][first.col] = 2;/*访问过的点标记为2*/
    InQueue(first);/*访问的点要入队列*/
    
    while(! QueueEmpty())
    {
        Print_Maze();/*打印迷宫图*/
        
        OutQueue(& p);/*出队列*/

        if((p.row+1 == MAX_ROW) && (p.col+1 == MAX_COL))
        {
            printf("it's go out ! \n");
            flag =  1;
            break;
        }

        if((p.row+1 < MAX_ROW) && (maze[p.row+1][p.col] == 0))
        {
            VisitPoint(p.row+1, p.col, p);
        }

        if((p.col+1 < MAX_COL) && (maze[p.row][p.col+1] == 0))
        {
            VisitPoint(p.row, p.col+1, p);
        }

        if((p.row-1 >= 0) && (maze[p.row-1][p.col] == 0))
        {
            VisitPoint(p.row-1, p.col, p);
        }

        if((p.col-1 >= 0) && (maze[p.row][p.col-1] == 0))
        {
            VisitPoint(p.row, p.col-1, p);
        }
    }

    if(flag)
    {
        Print_Foot();
    }
    else
    {
        printf("No Path ! \n");
    }

    return    0;
}

/*******************************************************************
    从打印的结果可以看出,这个算法的特点是沿着每个点的各个方向同时
展开搜索,每个可以走通的方向轮流往前走一步,这称为广度优先搜索
(BFS,Breadth First Search)。广度优先搜索是一种步步为营的策略,
每次都从各个方向探索一步,将前线推进一步,队列中的元素总是由各个
方向上可以走得通的点组成的,可见正是队列先进先出的性质使这个算法
具有了广度优先的特点。广度优先搜索还有一个特点是可以找到从起点到
终点的最短路径,而深度优先搜索找到的不一定是最短路径。
********************************************************************/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值