机器学习
文章平均质量分 68
MrWei108
专注技术
展开
-
机器学习之SVM详解
支持向量机简介支持向量机(SVM)是一种有监督的机器学习算法,既可以用于分类,也可以用于回归。然而,它主要用于分类问题。在这个算法中,我们将每个数据项绘制为n维空间中的一个点(其中n是您拥有的特征数),每个特征的值是特定坐标的值。然后,我们通过找到区分这两个类的超平面来执行分类(请看下面的快照)。支持向量只是个体观察的坐标。支持向量机是分离这两个类(超平面/直线)的前沿。你可以看一下支持向量...原创 2018-12-12 21:42:26 · 534 阅读 · 0 评论 -
LU矩阵分解
LU矩阵分解当给定一个矩阵A时,我们希望去找一个L(一个下三角矩阵)和U(一个上三角矩阵),如下: A必须能够被简化为行简化阶梯形U,而不需要交换任何行。L和U不是唯一的。使用行操作中使用的乘法倍数的相反数来获得U,我们可以构建L。如上图,在将A变换成上三角的过程中,将相应的倍数的相反数填入L矩阵中。...原创 2018-12-17 13:00:17 · 576 阅读 · 0 评论 -
先验概率VS后验概率
先验概率P(A)先验概率,在贝叶斯统计推断中,是一个事件在收集新数据之前的概率。在进行实验之前,这是基于现有知识对结果概率进行的最佳合理评估。随着新数据或信息的出现,事件发生的先验概率将被修正,以产生对潜在结果更准确的度量。修正后的概率成为后验概率,用贝叶斯定理计算。在统计学上,后验概率是事件A在事件B发生的前提下发生的概率。例如,三英亩的土地上标有A、B和C三个标记。在英亩C上发现石...原创 2018-12-12 09:53:26 · 821 阅读 · 0 评论 -
机器学习之朴素贝叶斯(附垃圾邮件分类)
朴素贝叶斯分类器介绍概述 朴素贝叶斯分类器技术基于贝叶斯定理,特别适用于输入维数较高的情况。尽管朴素贝叶斯方法简单,但它通常比更复杂的分类方法更胜一筹。 为了演示朴素贝叶斯分类的概念,请考虑上面插图中显示的示例。如前所述,这些物体可以分为绿色或红色。我...原创 2018-12-12 11:01:32 · 8730 阅读 · 0 评论 -
多层网络和BP反向传播算法
神经元数学模型一个具有R个输入的基本神经元如下图所示。每个输入都用适当的w加权,加权输入和偏置形成传递函数f的输入,神经元可以使用任何可微传递函数f生成输出。多层网络通常使用log-sigmoid传递函数logsig。(还有其他激活函数,如relu函数)当神经元的输入从负无穷到正无穷时,函数logsig产生0到1之间的输出。前馈网络一个由R输入的S个logs...原创 2018-12-24 14:41:58 · 927 阅读 · 0 评论 -
模型评价指标precision、recall
首先来看一个直观的例子:在信息检索中,我们经常会关心“检索出的信息中有多少比例是用户感兴趣的”和“用户感兴趣的信息中有多少被检索出来了”对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive)、假正例(false positive)、真反例(true negative)、假反例(false negative)四种情形。样例总数=TP+FP+TN+F...原创 2019-05-28 09:33:03 · 833 阅读 · 0 评论