/*
数组中的逆序对:
这是基于归并排序的,而快速排序的某个应用是寻找第k大的数
在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个
数组中的逆序对的总数。
例如在{7,5,6,4}中,一共存在5个逆序对{7,6},{7,5},{7,4},{6,4},{5,4}
总结:
先把数组分隔成子数组,先统计出子数组内部的逆序对数目,在统计两个相邻子数组之间的逆序对的数目,
统计的过程中还要对数组排序。
输入:
每个测试案例包括两行:
第一行包含一个整数n,表示数组中的元素个数。其中1 <= n <= 10^5。
第二行包含n个整数,每个数组均为int类型。
输出:
对应每个测试案例,输出一个整数,表示数组中的逆序对的总数。
样例输入:
4
7 5 6 4
样例输出:
5
*/
/*
关键:
1求逆序对数是归并排序的一个应用。分治3步法:划分,递归求解,合并
2 if(high - low > 1)//设置递归入口
3 mergeSort(low,mid);//递归求解
4 while(l < mid || m < high)//递归处理
{
if(m >= high || (l < mid && _iArr[l] <= _iArr[m]))//如果左边比右边大,或者右边已经全部处理结束,此时应将左边的元素放入到临时数组中,注意等于号不能漏
5 _iCnt += mid - l;//注意如果右边小于左边,这时候可以统计逆序数 = 左边还未放入临时数组的个数
*/
#include <stdio.h>
#include <string.h>
const int MAXSIZE = 100001;
int _iArr[MAXSIZE];
int _iTempArr[MAXSIZE];
int _iCnt;
void mergeSort(int low,int high)
{
if(high - low > 1)//设置递归入口
{
int mid = low + (high - low)/2;//划分
int l = low,m = mid,i = low;
mergeSort(low,mid);//递归求解
mergeSort(mid,high);
while(l < mid || m < high)//递归处理
{
if(m >= high || (l < mid && _iArr[l] <= _iArr[m]))//如果左边比右边大,或者右边已经全部处理结束,此时应将左边的元素放入到临时数组中,注意等于号不能漏
{
_iTempArr[i++] = _iArr[l++];
}
else
{
_iTempArr[i++] = _iArr[m++];
_iCnt += mid - l;//注意如果右边小于左边,这时候可以统计逆序数 = 左边还未放入临时数组的个数
}
}
for(int k = low ; k < high;k++)//将真正数组中的值,修改为临时数组中的值
{
_iArr[k] = _iTempArr[k];
}
}
}
void process()
{
int n;
while(EOF != scanf("%d",&n))
{
if(n < 1 || n > 1e5)
{
continue;
}
memset(_iArr,0,sizeof(_iArr));
memset(_iTempArr,0,sizeof(_iArr));
for(int i = 0 ; i < n ; i++)
{
scanf("%d",&_iArr[i]);
}
_iCnt = 0;
mergeSort(0,n);
printf("%d\n",_iCnt);
}
}
int main(int argc,char* argv[])
{
process();
getchar();
return 0;
}