#include<stdio.h>
#include<string.h>
int a[3]={1,2,3};
int main()
{
int n,c1[40000],c2[40000],j,k,i;
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
for(i=0;i<=32768;i++)
c1[i]=1;
for(i=1;i<=2;i++)
{
for(j=0;j<=32768;j++)
for(k=0;k+j<=32768;k=k+a[i])
c2[k+j]+=c1[j];
for(j=0;j<=32768;j++)
{
c1[j]=c2[j];
c2[j]=0;
}
}
while(scanf("%d",&n)!=EOF)
{
printf("%d\n",c1[n]);
}
return 0;
}
#include<stdio.h>
int main()
{
int sum,n,i;
while(scanf("%d",&n)!=EOF)
{
sum=0;
for(i=0;3*i<=n;i++)
{
sum+=(n-3*i)/2+1;
}
printf("%d\n",sum);
}
return 0;
}
需要满足的条件 k1 + 2 * k2 + 3 * k3 = n
* 原理:先确定硬币3的个数k3,每一个k3都能确定剩下的硬币换取方案,且不重复
* k3确定之后k1, k2只需要满足 k1 + 2 * k2 = n - 3 * k3
* 而满足这样的任意一个k2对应了一个k1,k2的范围为 0...(n-3 * k3) / 2,一共有(n-3 * k3) / 2 + 1 个
//完全背包求方案总数
#include<stdio.h>
#include<string.h>
int main()
{
int n,dp[33000],i,j;
while(scanf("%d",&n)!=EOF)
{
memset(dp,0,sizeof(dp));
dp[0]=1;
for(i=1;i<=3;i++)
for(j=i;j<=n;j++)
dp[j]=dp[j-i]+dp[j];
printf("%d\n",dp[n]);
}
return 0;
}
hdu 1284 完全背包
最新推荐文章于 2021-02-07 11:06:21 发布