SQL优化的一些方法
-
对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引
-
应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描
例如:select id from 表名 where 字段 is null (设计表结构时,尽量把字段都设置上默认值) -
应尽量避免在 where 子句中使用 != 或 < > 操作符,否则将引擎放弃使用索引而进行全表扫描
-
应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描
例如:select id from 表名 where 字段=1 or 字段=2;
可以这样查询:
select id from 表名 where 字段=1
union all
select id from 表名 where 字段=2; -
in 和 not in 也要慎用,否则会导致全表扫描
例如:select id from 表名 where 字段 in(1,2,3);
对于连续的数值,能用 between 就不要用 in 了:
select id from 表名 where 字段 between 1 and 3 -
模糊查询尽量不要把%通配符放在前面(放在后面不会导致索引失效)
select id from t where name like ‘%abc%’ -
不要在 where 子句中的 “=” 左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引
-
很多时候用 exists 代替 in 是一个好的选择:
select 字段 from 表1 where id in(select id from 表2)
用下面的语句替换:
select 字段 from 表1 where exists(select id from 表2 where id=表1.id) -
索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个。
-
任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段
-
尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理