DNN模型压缩:综述

模型压缩:Deep Compression

以剪枝和量化为主要压缩方式减小模型大小和计算量,使得模型可以应用在计算和存储资源有限的嵌入式等设备上。

剪枝Pruning

资料

论文

应用

  • pass

量化Quantification

资料

论文

  • Google:Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference 论文地址

应用

Caffe: Ristretto 量化方案
资料
  1. 参考:
  2. 论文:Ristretto
  3. 官网:
模拟硬件加速器算法的数据路径

给定一个完整的精度参考网络,为了模拟浓缩层,可用以下三个步骤:

  1. 将层输入和权重的量化为精度降低的格式(分别使用m和n位表示数字)
  2. 使用量化值执行MAC操作(MAC:卷积层和全连接层的一系列乘法和累加)
  3. 最终结果再次量化
    在这里插入图片描述在这里插入图片描述
量化策略
  1. 动态固定点:修改不同的定点格式。
  2. 迷你浮点:缩短位宽的浮点数。
  3. 二次幂参数:硬件实现时,具有二次幂参数的层不需要任何乘法器。
量化的舍入方案
  • 最近的偶数
  • 随机舍入
  1. 最近的偶数
    最近偶数法是一个无偏的方案,它舍入到最接近的离散值。其中,贝塔表示量化步长,
    [x]表示小于或等于x的最小量化值。
    在这里插入图片描述
  2. 随机舍入
    在这里插入图片描述

在这个再训练过程中,网络学习如何用限定字参数对图像进行分类。
由于网络权重只能具有离散值,所以主要挑战在于权重更新。
我们采用以前的工作(Courbariaux等1)的思想,它使用全精度因子权重(full precision shadow weights)。
对32位FP权重w应用小权重更新,从中进行采样得到离散权重w’。
微调中的采样采用 随机舍入方法(Round nearest sampling) 进行,Gupta等2人成功地使用了这种方法,
以16位固定点来训练网络。

使用阴影权重进行微调。 左侧显示了具有全精度阴影权重的训练过程。 在右侧,微调网络以验证数据集为基准。 量化值以橙色表示。
在这里插入图片描述

浮点数表示法
  1. 浮点数的二进制表示:参考:浮点数的二进制表示(IEEE 754标准)

整数部分用除2取余的方法,能整除则为1,否则为0;
小数部分用乘2取整的方法,能到1则为1,否则为0。

例1:浮点数128.125,表示为:10110010.001
转换成二进制的浮点数:即把小数点移动到整数位只有1,即为:1.0110010001 * 2^111,111是二进制,由于左移了7位,所以是111
例2:3.14159 我们直接对它进行转换,则为11.0010010000111111001…
12^1 + 12^0 + 1*2(-3)+…
无法精确表示3.14159.

  1. BCD码表示法:4位二进制数表示一位浮点。

  2. 阶码尾数表示法
    例如:浮点数128.125,表示为:10110010.001
    在这里插入图片描述
    这种思想来源于数学中的指数表示形式(科学计数法形式);
    10进制科学计数法 34.1 = 3.41 * 10^1
    2进制科学计数法 11.11 = 1.111 * 2^1

    一个二进制数 B 可以写成 B = 2^E * M
    一个十进制数 D 可以写成 D = 10^E * M
    一个R进制数 X 可以写成 X = R^E * M
    其中 E为指数,M为尾数, R为基数 。

更详细参考:MVision:ristretto

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值