梅森素数

/**
 * 标题: 梅森素数
    如果一个数字的所有真因子之和等于自身,则称它为“完全数”或“完美数”
    例如:6 = 1 + 2 + 3
    28 = 1 + 2 + 4 + 7 + 14
    早在公元前300多年,欧几里得就给出了判定完全数的定理:
    若 2^n - 1 是素数,则 2^(n-1) * (2^n - 1) 是完全数。
    其中 ^ 表示“乘方”运算,乘方的优先级比四则运算高,例如:2^3 = 8, 2 * 2^3 = 16, 2^3-1 = 7
    但人们很快发现,当n很大时,判定一个大数是否为素数到今天也依然是个难题。
    因为法国数学家梅森的猜想,我们习惯上把形如:2^n - 1 的素数称为:梅森素数。
    截止2013年2月,一共只找到了48个梅森素数。 新近找到的梅森素数太大,以至于难于用一般的编程思路窥其全貌,所以我们把任务的难度降低一点:
    1963年,美国伊利诺伊大学为了纪念他们找到的第23个梅森素数 n=11213,在每个寄出的信封上都印上了“2^11213-1 是素数”的字样。
    2^11213 - 1 这个数字已经很大(有3000多位),请你编程求出这个素数的十进制表示的最后100位。

 */
import java.math.BigInteger;

public class Test3_1
{
	public static void main(String[] args)
	{
		BigInteger two=new BigInteger("2");
		BigInteger sum=new BigInteger("1");
		for(int i=0;i<11213;i++)
		{
			sum=sum.multiply(two);
		}
		sum=sum.subtract(BigInteger.ONE);
		String str=sum.toString();
		str=str.substring(str.length()-100);
		System.out.println(str);
		
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值