- 博客(25)
- 资源 (1)
- 收藏
- 关注
原创 torch.masked_select实例
给定两个句子,每个句子由3个单词组成,每个单词的embedding尺寸为10,则可得到一个尺寸为[2,3,10]的张量现在要获取第0个句子的第0个单词和第一个句子的第2个单词的词嵌入组成的张量可通过如下代码实现input = torch.randint(0, 10, (2, 3, 10))index = torch.tensor([0, 2])def select(src, index): x, y, z = src.size() index = index.view(x, 1)
2022-05-06 15:58:33 204
原创 Pytorch 取某一矩阵的副对角线的上半部分
使用torch.fliplr()将张量左右颠倒使用torch.triu( )取出张量的(主对角线的)上三角部分再次使用torch.fliplr()将得到的张量左右颠倒副对角线上的元素是否保留可以通过torch.triu( )中的参数diagonal来控制,当diagonal=1时即可不保留副对角线上的元素import torchb = torch.arange(0, 25).view((5, 5)) # 产生一个5*5的张量print(b)'''tensor([[ 0, 1,.
2022-04-18 15:29:49 2255
原创 VSCode在调试Python代码时出现无法找到相对路径问题解决办法
VSCode在调试Python代码时出现无法找到相对路径问题解决办法在调试的配置文件launch.json中的"configurations"单元中添加"cwd": "${fileDirname}"来将调试时的根目录指定为当前文件所在的目录,并且不要忘记在上一行的末尾添加逗号....
2021-08-17 23:54:07 7615 6
原创 论文阅读--Inferring Emotion from Conversational Voice Data A Semi-Supervised Multi-Path Generative NN
Inferring Emotion from Conversational Voice Data A Semi-Supervised Multi-Path Generative Neural Network ApproachSuping Zhou, Jia Jia, Qi Wang, Yufei Dong, Yufeng Yin, Kehua Lei:Inferring Emotion from Conversational Voice Data: A Semi-Supervised Multi-Pat
2021-01-31 15:01:41 427
原创 论文阅读--Exploiting Unsupervised Data for Emotion Recognition in Conversations
Exploiting Unsupervised Data for Emotion Recognition in ConversationsWenxiang Jiao, Michael R. Lyu, Irwin King:Exploiting Unsupervised Data for Emotion Recognition in Conversations. EMNLP (Findings) 2020: 4839-4846Abstract与句子级文本分类问题不同,ERC任务可用的监督数据有限,这
2021-01-30 17:36:31 301
原创 Pytorch 基础笔记
Pytorch 基础笔记1. 基本数据类型pythonpytorchintIntTensor of size()floatFloatTensor of size()int arrayIntTensor of size [d1,d2,...]float arrayFloatTensor of size [d1,d2,...]string--注:pytorch中没有string类型,需要使用特定的嵌入层如word2vec,glove等方法对字符串编
2021-01-27 19:51:52 193
原创 论文阅读--DialogueGCN A Graph Convolutional Neural Network for Emotion Recognition in Conversation
DialogueGCN A Graph Convolutional Neural Network for Emotion Recognition in ConversationDeepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, Alexander F. Gelbukh:DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Co
2021-01-22 11:25:59 1223
原创 论文阅读--Modeling both Context- and Speaker-Sensitive Dependence for Emotion Detection。。。
Modeling both Context- and Speaker-Sensitive Dependence for Emotion Detection in Multi-speaker ConversationsDong Zhang, Liangqing Wu, Changlong Sun, Shoushan Li, Qiaoming Zhu, Guodong Zhou:Modeling both Context- and Speaker-Sensitive Dependence for Emoti
2021-01-21 21:56:46 653
原创 论文阅读--Higru Hierarchical gated recurrent units for utterance-level emotion recognition
Higru Hierarchical gated recurrent units for utterance-level emotion recognitionWenxiang Jiao, Haiqin Yang, Irwin King, Michael R. Lyu:HiGRU: Hierarchical Gated Recurrent Units for Utterance-Level Emotion Recognition. NAACL-HLT (1) 2019: 397-406Abstrac
2021-01-21 13:23:31 786
原创 Numpy学习笔记1
Numpy安装使用conda : conda install numpy使用pip : pip install numpy在终端中安装验证from numpy import * # 导入numpy库eye(4) # 生成对角矩阵'''输出结果array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]])'''ndarray 对象–N 维数组对象它是一系列同类
2021-01-19 15:40:04 94
原创 python学习笔记:异常
异常所有的异常封装为类,其皆为Exception类的子类.try-except-finallytry: 可能出现异常的语句except 异常类型1: # 异常类型 可选 异常处理语句(即出现异常时执行的语句)except 异常类型2: 异常处理语句...except 异常类型n: 异常处理语句finally: # 可选 不论异常是否发生都会执行的语句(常用来释放资源)注:若try块末尾含有return语句,在finally块存在的情况下,会先执行fin
2021-01-19 14:39:34 73
原创 python学习笔记:推导式,生成器,迭代器
推导式列表推导式将旧的列表通过推导产生新的符合需求的列表格式:[表达式 for 变量 in 旧列表][表达式 for 变量 in 旧列表 if 条件] # 遍历旧列表元素,对于旧列表中取出的每一个元素(赋值给了for后的变量)若此变量符合条件,则将此变量传递给前方表达式,由表达式处理后加入待返回的列表中.[表达式1 if 条件 else 表达式2 for 变量 in 列表] # 对旧列表中的每一个元素((赋值给了for后的变量) 若其满足条件,则执行表达式1,否则执行表达式2 ,将执行结果加
2021-01-19 14:37:57 173
原创 python学习笔记:正则表达式
正则表达式 Regular Expression (RE)需要使用 re模块,需要事先导入re.compile(pattern, flags=0):编译一个正则表达式的模式(即参数pattern),并返回一个Pattern对象Pattern的match(str)方法:从参数字符串的开头开始匹配模式串pattern,并返回Match对象,当开头与模式串不一致时,不再进行匹配并返回Nonere模块中的re.match(pattern, string, flags=0)方法:从参数字符串的开头开始匹配模
2021-01-19 13:28:23 164
原创 python学习笔记:模块与包的导入与使用
模块与包导入与使用模块格式:# 方式1:## 导入import ModelName # 模块名即为py文件名....## 调用模块ModelNmae.函数名(参数列表) # 函数ModelName.变量名 # 变量ModelNmae.类名 # 类# 方式2## 导入from ModelName import 变量|函数|类|* # 同时导入此模块中的多个内容时用逗号分割,若为星号,则表示引入模块中的所有内容## 调用模块### 此种导入方式在调用模块内容时可不必再
2021-01-19 13:26:09 201
原创 python学习笔记:面向对象
面向对象# 定义类class ClassName(SuperClassName,....): pass # 属性 # 方法# 使用类创建对象对象名 = ClassName()当解释器解释类的定义时,会将其加载到内存中的一块空间中,将类的属性和方法的信息存入此空间中.当使用类创建对象时,会在内存中另外开辟一块与类的定义区域相同的空间存储此对象(若创建对象时无初始化操作,则初始对象空间中不会拥有任何属性信息,即此时对象空间为空).创建对象时的系统底层操作:查找相应类的内
2021-01-19 13:24:08 85
原创 python学习笔记:函数、装饰器
函数注:python中无函数重载定义函数格式:def 函数名(参数列表): 函数体#函数体需要有一个相对def语句的tab缩进注:函数名亦可以作为实参传入函数# 例:定义一个函数:生成10个[1,20)的随机数并打印def fun(): for i in range(10): ra = random.randint(1, 20) print(ra)fun()# 例:定义一个函数:求两数和并返回def addfun(a, b):
2021-01-19 13:21:19 756
原创 python学习笔记:字符串,列表,元组,字典,集合
字符串字符串以常量的形式存储在内存中,在向变量赋值时仅将字符串常量的地址赋给相应变量,当用此变量赋值给其他变量时,仅将地址赋值给新变量(使用三引号声明的字符串会单独的常量池中开辟空间,因此若同一字符串使用三引号包裹与使用单或双引号包裹的变量的地址不同).比较两个字符串的内容是否相同要使用 ==使用单引号(''),双引号("")或三引号(''' ''')引起来的内容为字符串.当使用三引号时,使用print()输出时会按照字符串的原格式输出mgs = '''AAA BBB CCC
2021-01-19 13:20:49 505
原创 论文阅读--Modeling both Intra-and Inter-modal Influence for Real-Time Emotion Detection in Conversations
Modeling both Intra- and Inter-modal Influence for Real-Time Emotion Detection in ConversationsDong Zhang, Weisheng Zhang, Shoushan Li, Qiaoming Zhu, Guodong Zhou:Modeling both Intra- and Inter-modal Influence for Real-Time Emotion Detection in Conversati
2021-01-17 20:17:19 385
原创 论文阅读--Real-Time Emotion Recognition via Attention Gated Hierarchical Memory Network.
Real-Time Emotion Recognition via Attention Gated Hierarchical Memory Network.Wenxiang Jiao, Michael R. Lyu, Irwin King:Real-Time Emotion Recognition via Attention Gated Hierarchical Memory Network. AAAI 2020: 8002-8009AbstractReal-time emotion recogn
2021-01-16 21:43:22 659
原创 论文阅读--Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances
Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances–会话中的情感识别:研究挑战,数据集和最新进展Soujanya Poria, Navonil Majumder, Rada Mihalcea, Eduard H. Hovy:Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent A
2021-01-16 17:25:34 1346
原创 论文阅读--Joint Representation Learning of Legislator and Legislation for Roll Call Prediction
Joint Representation Learning of Legislator and Legislation for Roll Call PredictionYuqiao Yang, Xiaoqiang Lin, Geng Lin, Zengfeng Huang, Changjian Jiang, Zhongyu Wei. Joint Representation Learning of Legislator and Legislation for Roll Call Prediction. I
2021-01-16 17:07:38 659 1
原创 论文阅读--Adapted Dynamic Memory Network for Emotion Recognition in Conversation
Adapted Dynamic Memory Network for Emotion Recognition in ConversationXing S , Mai S , Hu H . Adapted Dynamic Memory Network for Emotion Recognition in Conversation[J]. IEEE Transactions on Affective Computing, 2020, PP(99):1-1.Abstract本文解决在多模态对话数据上的ER
2021-01-16 17:01:56 638
原创 论文阅读--COSMIC: COmmonSense knowledge for eMotion Identification in Conversations
COSMIC: COmmonSense knowledge for eMotion Identification in ConversationsDeepanway Ghosal, Navonil Majumder, Alexander F. Gelbukh, Rada Mihalcea, Soujanya Poria:COSMIC: COmmonSense knowledge for eMotion Identification in Conversations. EMNLP (Findings) 20
2021-01-16 16:56:08 1448 3
原创 论文阅读--DialogueRNN : An Attentive RNN for Emotion Detection in Conversations
DialogueRNN An Attentive RNN for Emotion Detection in ConversationsNavonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander F. Gelbukh, Erik Cambria:DialogueRNN: An Attentive RNN for Emotion Detection in Conversations. AAAI 2019: 681
2021-01-16 16:38:17 1443
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人