java常用数据结构

List:ArrayList 和 LinkedList

     1、ArrayList 和 LinkedList都是非线程安全
     2、ArrayList 可以直接根据下表定位元素,查找速度快,但是修改元素慢;LinkedList 查找元素必须从第一个开始逐个查找,查找速度慢,但是修改元素快
     3、当多个线程访问list时,因为每两个相邻节点之间存在前后关系(指针或内存地址),所以多个线程同时对list添加数据时会报错

Set:HashSet、LinkedHashSet、TreeSet

     1、HashSet:存放的元素是无序的,可以存null
     2、TreeSet: 存放的数据是有序的(根据存放的数据排序,而不是存放的先后顺序,同时也提供了排序规则的构造函数),不能存null
     3、LinkedHashSet: 有序,基于链表实现
     4、HashSet、TreeSet、LinkedHashSet都是非线程安全的

Map:HashMap、TreeMap、Hashtable、ConcurrentHashMap

    1、HashMap 非线程安全,数据是无序的,可存储空的键或值,查找的事件复杂度是O(1),
    2、TreeMap 非线程安全,基于红黑树实现,根据键的自然顺序或Comparator 来排序,查找的事件复杂度是O(logn)
    3、Hashtable 无序、不允许null值作为键,通过在方法上加 synchronized实现了线程安全,性能差

         也可以通过 Collections.synchronizedMap(hashMap) 获得一个线程安全的类,也是通过在方法上加 synchronized实现线程安全

     4、ConcurrentHashMap:是线程安全的,通过put方法看一下ConcurrentHashMap的原理

           从下面的代码可以看到ConcurrentHashMap是通过cas、synchronized在方法里面加锁,锁的粒度比Hashtable要小,所以效率更高;

           在jdk1.7中使用了Segment 来提高效率,一个ConcurrentHashMap中默认有16个Segment ,每个Segment都是线程安全的,而且Segment负责一段hash值,这样可以最多16个线程同时对map操作,但在jdk1.8中不再使用Segment,虽然代码中仍然有Segment只是为了兼容以前的版本;

final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        //获取键的hash值
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            //1、判断 table 如果为空,就初始化,table是一个node数组,默认大小为16
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //2、判断i位置是否为空,如果是就将 key和value封装成node放在i位置,通过cas(unsafe接口)实现    
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            //3、如果i位置不为空,并且i位置的节点的hash为-1,则说明table正在扩容中
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            //4、如果i位置不为空,并且节点的key的hash不为-1,则更新节点
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                         4.1这一段是插入链表的逻辑
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                         4.2这一段时插入红黑树的逻辑
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    //  当链表中的元素个数超过八个时自动转为红黑树
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值