基于python医院大数据分析与展示平台的设计与实现

随着医疗行业的迅猛发展,医疗数据量呈现出爆炸性增长,传统的数据处理手段已难以应对。这些海量的医疗数据有巨大的潜在价值,但传统的数据处理方法却无法深入挖掘其内在价值。因此,我们迫切需要借助先进的大数据分析与展示平台,对这些数据进行全面整合、深入分析、精准挖掘,并通过可视化手段进行直观展示。这样的平台不仅能够大幅提升医疗服务的效率和质量,为患者提供更加精准、个性化的诊疗方案,还能推动医学科研的快速发展,为医疗行业的创新提供强大动力。同时,通过优化医疗资源的配置和利用,这样的平台还有助于解决医疗资源分配不均的问题,为社会带来更多的福祉。

本系统以Django框架和MySQL数据进行建设,通过Python语言实现,该系统重点为管理员提供用户、医院信息等数据管理功能,为用户提供医院信息查看,各科室收入分析、各科室挂号统计、各科室就诊统计、各科室退号统计、预约类型分析、门诊人次工作量各费用构成分析功能,以及用户主页和大屏显示等功能。用户通过对挂号科室比较。

关键词 医院销售数据分析 大屏展示  Django  Python  MySQL

课题研究的背景

随着医疗行业的快速发展和数字化转型,医疗机构每天都会产生大量的数据,包括但不限于患者健康数据、医疗科研数据、医疗政策数据等。这些数据具有巨大的潜在价值,可以用于优化医疗服务、提升医疗效率、推动医学科研发展等方面。然而,传统的数据处理和分析方法往往难以应对如此庞大和复杂的数据量,因此需要借助大数据分析和展示平台来对这些数据进行有效的管理和利用。随着物联网、人工智能等技术的不断发展和应用,医疗领域的数据来源和类型也日益丰富。物联网技术使得医疗设备、患者穿戴设备等可以实时收集和传输数据,为医疗大数据提供了丰富的数据来源。同时,人工智能技术的应用也为医疗大数据的分析和处理提供了更多的可能性和挑战。这些技术的发展和应用为医院大数据分析与展示平台的设计和实现提供了技术基础和支持。国家对于医疗信息化的建设和推进也为医院大数据分析与展示平台的发展提供了良好的政策环境。随着国家积极倡导医疗系统信息化建设,医疗领域信息化程度得到了很大的提高。医疗大数据分析与展示平台作为医疗信息化的重要组成部分,得到了越来越多的关注和投入。政府和相关机构也出台了一系列政策和措施,推动医疗大数据的应用和发展,为平台的设计和实现提供了有力的政策保障和支持。我国公共医疗卫生资源存在城乡差距大、优质资源集中分布等问题,实现城乡之间的医疗卫生资源共享成为丞待解决的重要问题。通过大数据分析与展示平台,医疗机构可以更好地了解资源的利用情况和患者的需求,实现资源的优化配置和共享,提高医疗服务的公平性和可及性。

课题研究目的意义

医院大数据分析与展示平台的设计与实现的主要意义有以下几点

1、从提升医疗效率的角度来看,医院大数据分析与展示平台的设计与实现能够极大地优化医疗资源的配置和利用。在传统的医疗模式下,医护人员往往面临着海量的数据和信息,难以从中提取出有价值的内容。而大数据分析与展示平台则能够通过先进的数据处理和分析技术,将复杂的医疗数据转化为直观、易懂的图表和报告,帮助医护人员迅速了解患者的病情和治疗效果,从而做出更加准确和高效的诊疗决策。同时,平台还可以对医院的运营数据进行实时监控和分析,帮助管理者发现潜在的问题和风险,及时进行调整和优化,提升医院的整体运营效率。

2、从推动医学科研的角度来看,医院大数据分析与展示平台能够为科研人员提供丰富的数据资源和强大的分析工具。科研人员可以通过平台获取大量的医疗数据,并利用数据分析技术挖掘其中的规律和趋势,为疾病诊断、治疗和预防提供新的思路和方法。这不仅有助于推动医学科研的进步,还能够为患者提供更加先进和有效的治疗手段,提高医疗服务的水平。

3、医院大数据分析与展示平台的设计与实现有助于推动医疗行业的数字化转型。随着信息技术的不断发展,数字化已经成为了各行各业的重要趋势。医疗行业作为关乎人民群众生命健康的重要领域,其数字化转型的步伐也在不断加快。大数据分析与展示平台作为数字化转型的重要工具之一,能够帮助医疗机构实现数据的集中存储、管理和分析,提升医疗服务的智能化和个性化水平。通过平台的应用,医疗机构可以更加精准地了解患者的需求和行为,提供更加贴心和个性化的服务,增强患者的就医体验。

4、医院大数据分析与展示平台的设计与实现还具有重要的社会价值。通过平台的应用,医疗机构可以更好地掌握疾病的流行规律和变化趋势,为政府制定公共卫生政策和应对突发公共卫生事件提供科学依据。同时,平台还可以促进医疗机构之间的信息共享和合作,打破信息孤岛,提升整个医疗行业的服务水平和效率。

研究内容和论文结构

第一章是绪论,研究医院销售数据分析系统背景以及意义,并描述该系统

研究意义、研究内容和结构安排等方面。

第二章是重要技术介绍,对医院销售数据分析系统采用的Pyhon语言、MySQL数据库以及Django框架等相关知识进行介绍。

第三章是系统分析与总体设计,分析建设医院销售数据分析系统的可行性、用户需求,通过数据流图等对医院销售数据分析系统对应功能的数据流转情况进行介绍,对医院销售数据分析系统总体结构设计做以阐述,其次对用户信息、医院信息、等表结构设计进行介绍。

第四章是系统实现,对医院销售数据分析系统中的医院信息可视化展示、医院采集、医院信息管理、医院评论管理等业务功能具体设计和实现进行介绍。

第五章是系统测试,介绍测试医院销售数据分析系统的具体目的,简单说明测试方法,并描述医院信息管理、各科室收入分析对比各科室挂号统计对比名功能具体测试过程进行描述。

需求分析

医院销售数据分析系统是基于B/S模式构建的服务平台,主要面向用户和管理员提供数据分析支持。通过仔细剖析系统的当前状态,我们精准地把握了用户的需求点。为了保证数据的安全性和业务处理的准确性,用户在进行与医院销售数据相关的各项操作时,都需要通过登录系统来验证身份。

用户需求分析

 通过走访确定医院销售数据分析系统中用户的功能需求和管理员功能需求如下所示。

一、用户需求:

1.注册,为用户提供注册为系统用户的入口,用户需要通过账号、姓名 、性别、电话、邮箱、角色等信息进行注册。

2.登录,用户通过已注册的账号登录系统前台。

3.医院信息查看,根据用户编号、性别进行检索需要的医院信息,对用户编号、性别、就诊情况、挂号科室、挂号类型、医生职称、年份、预约类型、发货地址、挂号费、手术费、治疗费、检查费、其它费用、总费用、年龄进行查看。

4.信息查看,对管理员发布的信息进行查看。

5.用户主页,显示医院的热门颜色、热门检查费、热门治疗费、热门类型等信息,并通过环形图展示热门颜色挂号科室占比、热门检查费挂号科室占比、热门治疗费挂号科室占比、热门类型挂号科室占比、热门省份广东挂号科室占比、热门城市深圳挂号科室占比等数据,通过柱状图展示各科室挂号统计柱状图、医院检查费年份统计折线图。

6.可视化展示,分别通过柱状图、环形图、折线图等可视化形式展示各科室收入分析对比、各科室挂号统计对比、各科室就诊统计对比、各科室退号统计对比、预约类型分析等数据,通过词云图展示医院颜色。

7.医院销售大屏展示:展示总费用词云图、医院销售信息、所在城市医院挂号科室统计、其它费用挂号科室统计、所在省份医院挂号科室统计、医院治疗费挂号科室统计等数据情况。

8.个人中心,对自己的注册等个人信息进行维护。

二、管理员需求:

1.用户管理功能:允许管理员按照用户名或用户姓名查询已注册的用户信息。同时,后台支持新增用户信息的操作,并且管理员能够对已有的用户信息进行修改或删除,以满足用户管理的全面需求。

2.医院信息管理功能:根据实际需求,系统提供医院信息的增加、修改、删除和查看功能。管理员可以方便地管理医院信息,确保数据的准确性和实时性。

3.医院评论管理功能:该功能允许管理员对医院预约类型据进行增加、修改、删除和查看操作。这有助于及时处理用户反馈,维护医院销售数据的准确性和完整性。

4.发布信息管理功能:管理员可以通过该功能增加、修改、删除和查看发布的信息数据。这有助于保持信息的时效性,同时确保信息的准确性和一致性。

5.个人中心功能:用户可以在个人中心进行密码修改操作,保护个人隐私和账户安全。这一功能增强了用户的安全感和信任度,提升了用户体验。

系统用例图分析

通过用例图描述医院销售数据分析系统中不同用户具有那些功能。

(1)用户用例如图3-1,用户主要参与注册、登录、用户主页、医院销售大屏展示、医院信息查看、信息查看、各科室收入分析对比、各科室收入分析对比、各科室挂号统计对比、各科室就诊统计对比、各科室退号统计对比、预约类型分析、个人中心等用例。

(2)管理员用例如图,管理员参与登录、用户管理、医院信息管理、医院评论管理、信息管理等用例。

系统功能结构设计

医院销售数据分析系统致力于为用户和管理员提供全面而高效的服务。对于用户而言,他们可以通过注册和登录功能进入系统,并在用户主页上享受个性化的服务体验。系统还提供了医院销售大屏展示功能,让用户能够直观地了解销售情况。此外,用户还可以查看医院信息、信息资讯,以及进行各种挂号科室对比,如价格、类型、检查费、医生职称和区域等,帮助用户做出更明智的购买决策。在个人中心,用户可以管理自己的个人信息和设置。管理员在系统中扮演着至关重要的角色。他们负责管理用户信息,确保用户数据的准确性和安全性。同时,管理员还需要负责医院信息的管理,包括新增、修改和删除医院数据,以确保系统中的医院信息始终保持最新和最准确的状态。此外,管理员还需要处理医院评论信息,审核并管理用户提交的评论,以维护系统的良好运行。最后,管理员还需要负责发布信息的管理,及时发布重要的通知和公告。整个医院销售数据分析系统的结构图如图所示,清晰地展示了系统的各个组成部分及其之间的关系,为系统的开发和维护提供了有力的支持。

用户主页功能

通过userPage()方法完成用户主页信息的获取。其中在主页中显示医院的热门颜色、热门检查费、热门治疗费、热门类型等信息数据,分别通过V_zspxlcnt类、V_app_pcolorcnt类、V_app_ppaicnt类、V_app_pkuancnt类中的objects方法读取上述信息的数据,并通过环形图展示热门颜色挂号科室占比、热门检查费挂号科室占比、热门治疗费挂号科室占比、热门类型挂号科室占比、热门省份广东挂号科室占比、热门城市深圳挂号科室占比等数据,通过柱状图展示各科室挂号统计柱状图、医院检查费年份统计折线图等数据,它们分别通过V_app_ptypecnt类、V_app_pprovcnt类、V_app_pcitycnt类中的objects方法读取上述信息的数据,其代码如下。

 @xframe_options_exempt
def userPage(request):
    dataptype = V_app_ptypecnt.objects.filter()
    datappaiscs = V_app_ppai_scscnt.objects.filter()
    zspxl=0
    list = V_zspxlcnt.objects.filter()
    if list.exists():
        zspxl = list.values('cnt')[0].get("cnt")

    pcolornm=""
    pcolorcnt=0
    list = V_app_pcolorcnt.objects.filter()
    if list.exists():
        pcolorcnt = list.values('cnt')[0].get("cnt")
        pcolornm = list.values('wf1')[0].get("wf1")
        pcolorcnt=pcolorcnt/zspxl
        pcolorcnt=pcolorcnt*100
        pcolorcnt='{:.2f}'.format(pcolorcnt)
    ppainm=""
    ppaicnt=0
    list = V_app_ppaicnt.objects.filter()
    if list.exists():
        ppaicnt = list.values('cnt')[0].get("cnt")
        ppainm = list.values('wf1')[0].get("wf1")
        ppaicnt=ppaicnt/zspxl
        ppaicnt=ppaicnt*100
        ppaicnt='{:.2f}'.format(ppaicnt)
    pkuannm=""
    pkuancnt=0
    list = V_app_pkuancnt.objects.filter()
    if list.exists():
        pkuancnt = list.values('cnt')[0].get("cnt")
        pkuannm = list.values('wf1')[0].get("wf1")
        pkuancnt=pkuancnt/zspxl
        pkuancnt=pkuancnt*100
        pkuancnt='{:.2f}'.format(pkuancnt)
    ptypenm=""
    ptypecnt=0
    list = V_app_ptypecnt.objects.filter()
    if list.exists():
        ptypecnt = list.values('cnt')[0].get("cnt")
        ptypenm = list.values('wf1')[0].get("wf1")
        ptypecnt=ptypecnt/zspxl
        ptypecnt=ptypecnt*100
        ptypecnt='{:.2f}'.format(ptypecnt)
    pprovnm = ""
    pprovcnt=0
    list = V_app_pprovcnt.objects.filter()
    if list.exists():
        pprovcnt = list.values('cnt')[0].get("cnt")
        pprovnm = list.values('wf1')[0].get("wf1")
        pprovcnt=pprovcnt/zspxl
        pprovcnt=pprovcnt*100
        pprovcnt='{:.2f}'.format(pprovcnt)
    pcitynm = ""
    pcitycnt = 0
    list = V_app_pcitycnt.objects.filter()
    if list.exists():
        pcitycnt = list.values('cnt')[0].get("cnt")
        pcitynm = list.values('wf1')[0].get("wf1")
        pcitycnt = pcitycnt / zspxl
        pcitycnt = pcitycnt * 100
        pcitycnt = '{:.2f}'.format(pcitycnt)    

医院销售大屏展示功能

医院销售大屏展示界面如图4-3所示。界面中通过词云图展示总费用情况,通过列表显示医院销售信息,通过横向柱状图展示所在省份医院挂号科室统计数据,通过环形图展示所在城市医院挂号科室统计数据,通过柱状图展示其它费用挂号科室统计数据,通过曲线图展示医院治疗费挂号科室统计等数据情况。

通过ke_ping()方法完成医院销售大屏展示信息的获取。其通过Phoneinfo类中的filter()方法读取医院销售信息,并通过collections类中的Counter()方法得到总费用关键词信息,作为词云图的数据源。通过V_app_pcitycnt类中的得到所在城市医院挂号科室统计数据,其代码如下。

def ke_ping(request):
    list = Phoneinfo.objects.filter()
    result = {}
    titKey = []
    for objEnt in list:
        if objEnt.splx:
            o_tantitm = str(objEnt.splx).split()  # 读取每个分词
            for w in o_tantitm:  # 读取每一行分词
                titKey.append(w)
    # print(len(titKey))
    # 分词数量
    cnt_keyword = collections.Counter(titKey).most_common(100)
    # print(cnt_keyword)
    for o_cnt_keyword in cnt_keyword:
        if o_cnt_keyword[0] == ' ' or o_cnt_keyword[0] == '-' or o_cnt_keyword[0] == "'" or o_cnt_keyword[
            0] == ',' or o_cnt_keyword[0] == ':' \
          or o_cnt_keyword[0] == '\\' or o_cnt_keyword[0] == '"' or len(o_cnt_keyword[0]) <= 1 or \
                o_cnt_keyword[0] == 'for' \
                or o_cnt_keyword[0] == 'the' or o_cnt_keyword[0] == 'with' or o_cnt_keyword[0] == 'and' or \
                o_cnt_keyword[0] == '...':
            continue
        try:
            int(o_cnt_keyword[0])
        except ValueError:
            result[o_cnt_keyword[0]] = o_cnt_keyword[1]
    dataphone = Phoneinfo.objects.filter().order_by("-spxl")[0:9]
    datacity = V_app_pcitycnt.objects.filter().order_by("-cnt")[0:9]
    datacolor = V_app_pcolorcnt.objects.filter().order_by("-cnt")[0:12]
    datapkuan = V_app_pkuancnt.objects.filter().order_by("-cnt")[0:10]
    datapro = Phoneinfo.objects.filter().order_by("-id")[0:9]     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值