caffe可以分为三层:Blob、Layer、Net
Blob是一个四维的数组,用于存储数据,包括输入数据、输出数据、权值;
Layer层则是神经网络中具体的各层结构,主要用于计算,在根据配置文件初始化网络结构后,前向计算结果,反向更新参数,而它的输入和输出都是Blob数据;
Net的层就是多个Layer组合而成的有向无环图结构,也就是具体的网络了。
Layer和Net的代码有待深入,尤其是Layer的代码,caffe实现了差不多40种不同的Layer层,里面有不同的激活函数,这个要好好研究下。
关于Blob就这么多内容,毕竟就是一个统一的数据存取接口,学到了一些封装的手法,可以看看CPU和GPU一些接口的封装;另一方面是对于Protocol Buffer有了一些了解。
- #ifndef CAFFE_BLOB_HPP_//防止头文件重复引用
- #define CAFFE_BLOB_HPP_
- #include <algorithm>
- #include <string>
- #include <vector>
- /*common.hpp主要用来单例化Caffe类,
- *并封装了boost和CUDA随机数生成的函数,
- *提供了统一的接口
- */
- #include "common.hpp"
- /*caffe.pb.h是google protocol buffer根据caffe.proto自动生成的。
- *使用protocol buffer有这些好处,一方面可以用文本文件定义结构化的数据类型,
- *另一方面可以生成查询效率更高、占空间更小的二进制文件
- */
- #include "caffe.pb.h"
- //syncedmem主要用于分配内存和释放内存
- #include "syncedmem.hpp"
- //math_functions里面封装了很多cblas矩阵运算
- #include "util/math_functions.hpp"
- const int kMaxBlobAxes = INT_MAX;
- namespace caffe {//命名空间为caffe
- /*
- *主要数据有两个data和diff,用num、channels、height和width
- *这四个维度来确定数据的具体位置,做一些数据查询和Blobreshape的操作
- */
- template <typename Dtype>
- class Blob {
- public:
- Blob()//blob的构造函数
- : data_(), diff_(), count_(0), capacity_(0) {}//data_(), diff_()是用于存放数据的指针,
- /*num_, channel_, height_, width_主要用来做定位offset和reshape处理。
- *对于输入(n, c, h, w)位置的数据位置为((n*channels_+c)*height_+h)*width_+w,
- *可以依据位置取data_()或diff_()中的数据。
- */
- explicit Blob(const int num, const int channels, const int height,
- const int width);
- explicit Blob(const vector<int>& shape);
- /*Reshape函数的作用是改变一个blob的大小
- *1.读入num_,channels_,height_,width_的大小
- *2.计算count_:count_ = num_ * channels_ * height_ * width_;
- *3.如果count_不为0,则重新为data_和diff_分配一块空间
- *如果count为0,则都初始化为NULL
- */
- void Reshape(const int num, const int channels, const int height,
- const int width);
- void Reshape(const vector<int>& shape);
- void Reshape(const BlobShape& shape);
- //ReshapeLike的作用是为data_和diff_ 重新分配一块空间,大小和另一个blob的一样
- void ReshapeLike(const Blob& other);
- inline string shape_string() const {
- ostringstream stream;
- for (int i = 0; i < shape_.size(); ++i) {
- stream << shape_[i] << " ";
- }
- stream << "(" << count_ << ")";
- return stream.str();
- }
- inline const vector<int>& shape() const { return shape_; }//返回shape
- //返回第i个索引的shape,index可以是负数,
- inline int shape(int index) const {
- return shape_[CanonicalAxisIndex(index)];
- }
- inline int num_axes() const { return shape_.size(); }//返回shape的大小
- inline int count() const { return count_; }//返回参数count
- //计算一个slice的体积
- inline int count(int start_axis, int end_axis) const {
- int count = 1;
- for (int i = start_axis; i < end_axis; ++i) {
- count *= shape(i);
- }
- return count;
- }
- //计算从从一个特定的axis到最后一个axis的slice的体积。
- inline int count(int start_axis) const {
- return count(start_axis, num_axes());
- }
- //对负数(index可能是负数)规范化的一个函数
- inline int CanonicalAxisIndex(int axis_index) const {
- if (axis_index < 0) {
- return axis_index + num_axes();
- }
- return axis_index;
- }
- /// 功能是返回一些成员变量,比如,num,channels,height,width等
- inline int num() const { return LegacyShape(0); }
- inline int channels() const { return LegacyShape(1); }
- inline int height() const { return LegacyShape(2); }
- inline int width() const { return LegacyShape(3); }
- inline int LegacyShape(int index) const {
- if (index >= num_axes() || index < -num_axes()) {
- /*如果index超出索引范围,但是在范围 [0, 3] 或[-4, -1]内,
- *这种特殊的情况下,模拟一个填充值,用来填补axes 。
- */
- return 1;
- }
- return shape(index);
- }
- //计算偏移量,因为数据在内存是以一维数组形式的,所以需要计算偏移量来访问
- inline int offset(const int n, const int c = 0, const int h = 0,
- const int w = 0) const {
- return ((n * channels() + c) * height() + h) * width() + w;
- }
- inline int offset(const vector<int>& indices) const {
- int offset = 0;
- for (int i = 0; i < num_axes(); ++i) {
- offset *= shape(i);
- if (indices.size() > i) {
- offset += indices[i];
- }
- }
- return offset;
- }
- /**
- *从source拷贝数据。copy_diff作为标志来区分是拷贝data还是拷贝diff
- *1.如果是GPU: 如果是拷贝diff:调用cudaMemcpy函数将source的diff拷贝过来,否则拷贝data
- *2.如果是CPU: 如果是拷贝diff:调用memcpy函数将source的diff拷贝过来 否则拷贝data
- */
- void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
- bool reshape = false);
- //从cpu访问数据data
- inline Dtype data_at(const int n, const int c, const int h,
- const int w) const {
- return cpu_data()[offset(n, c, h, w)];
- }
- //从cpu访问数据diff
- inline Dtype diff_at(const int n, const int c, const int h,
- const int w) const {
- return cpu_diff()[offset(n, c, h, w)];
- }
- //从cpu访问数据data
- inline Dtype data_at(const vector<int>& index) const {
- return cpu_data()[offset(index)];
- }
- //从cpu访问数据diff
- inline Dtype diff_at(const vector<int>& index) const {
- return cpu_diff()[offset(index)];
- }
- //从cpu访问数据data
- inline const shared_ptr<SyncedMemory>& data() const {
- return data_;
- }
- //从cpu访问数据diff
- inline const shared_ptr<SyncedMemory>& diff() const {
- return diff_;
- }
- /**调用SyncedMemory的函数,来返回数据的指针;前两个调用to_cpu(),返回cpu_ptr;
- *第一个对于data对象,第二个对于diff对象
- *后两个调用to_gpu(),返回gpu_ptr;第一个对于data对象,第二个对于diff对象
- */
- void set_cpu_data(Dtype* data);
- const Dtype* cpu_data() const;
- const Dtype* gpu_data() const;
- const Dtype* cpu_diff() const;
- const Dtype* gpu_diff() const;
- Dtype* mutable_cpu_data();
- Dtype* mutable_gpu_data();
- Dtype* mutable_cpu_diff();
- Dtype* mutable_gpu_diff();
- /**更新data_的数据,就是减去diff_的数据。
- *1.判断blob的位置
- *2.调用caffe_axpy:在math_functions.cpp可以找到该函数的实现,其实这函数也是封装了mkl的函数。这里调用是为了实现了两个向量的减法。
- *3.调用caffe_gpu_axpy:在math_functions.cpp可以找到该函数的实现,其实这函数也是封装了cublas的函数。这里调用是为了实现了两个向量的减法。
- */
- void Update();
- /**功能:从proto读数据进来,其实就是反序列化
- *1.先把blob的大小改变一下
- *2.得到cpu中数据的地址
- *3.用proto中的data覆盖blob中的data
- *4.用proto中的diff覆盖blob中的diff
- */
- void FromProto(const BlobProto& proto, bool reshape = true);
- //把blob数据保存到proto中
- void ToProto(BlobProto* proto, bool write_diff = false) const;
- //计算绝对值的data总和(L1范数)。
- Dtype asum_data() const;
- //计算绝对值的diff总和(L1范数)。
- Dtype asum_diff() const;
- //计算绝对值的data总和(L2范数)。
- Dtype sumsq_data() const;
- //计算绝对值的diff总和(L2范数)。
- Dtype sumsq_diff() const;
- //通过常量因子测量blob data
- void scale_data(Dtype scale_factor);
- 通过常量因子测量blob diff
- void scale_diff(Dtype scale_factor);
- //从other的blob复制data和diff的值
- void ShareData(const Blob& other);
- void ShareDiff(const Blob& other);
- bool ShapeEquals(const BlobProto& other);
- protected:
- shared_ptr<SyncedMemory> data_;// 存放数据
- shared_ptr<SyncedMemory> diff_;//存放梯度
- vector<int> shape_;//存放形状
- int count_;//数据个数
- int capacity_;//数据容量
- DISABLE_COPY_AND_ASSIGN(Blob);
- }; // class Blob
- } // namespace caffe
- #endif // CAFFE_BLOB_HPP_