深度学习
ctgu_aiqinhai
这个作者很懒,什么都没留下…
展开
-
Batch Normalization 学习笔记
转载自:http://blog.csdn.net/hjimce/article/details/50866313可参阅:知乎http://www.zhihu.com/question/38102762一、背景意义本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Tr转载 2016-09-21 11:14:18 · 1169 阅读 · 0 评论 -
caffe模型参数的一些解释
作者:wjmishuai出处: http://blog.csdn.net/wjmishuai/article/details/50890214声明:版权所有,转载请联系作者并注明出处[plain] view plain copy 原始数据是28*28 1:数据层: layer { name: "mnist"//数据层转载 2016-09-21 15:14:19 · 1122 阅读 · 0 评论 -
caffe源码解析之blob.hpp或blob.cpp
作者:wjmishuai出处:http://blog.csdn.net/wjmishuai/article/details/50961471声明:版权所有,转载请注明出处caffe可以分为三层:Blob、Layer、NetBlob是一个四维的数组,用于存储数据,包括输入数据、输出数据、权值;Layer层则是神经网络中具体的各层结构,主要用于计算,在根据配转载 2016-09-21 15:12:37 · 807 阅读 · 0 评论 -
深度学习与人脸识别系列(4)__利用caffe训练深度学习模型
一:下载训练集和测试集训练集的下载地址:http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html测试集的下载地址:http://vis-www.cs.umass.edu/lfw/二:利用linux脚本生成训练集[plain] view plain转载 2016-09-21 15:11:22 · 3144 阅读 · 3 评论 -
TensorFlow教程06:MNIST的CNN实现——源码和运行结果
[小编推荐] 假定您已经安装好了TensorFlow,这里放了第二个MNIST实验的代码和参考结果,你可以直接运行验证。源码[python] view plain copy #!/usr/bin/python import tensorflow as tf import sys from tensorflow.exa转载 2016-09-21 15:09:49 · 582 阅读 · 0 评论 -
Caffe学习笔记(七)—— solver参数说明及利用自己的数据集对权值微调
本文主要介绍:在进行网络训练和权值微调过程中,需要对solver中的参数进行设置,本文主要介绍solver中的参数设置,以及如何利用自己的数据集,对权值进行微调。1. solver参数设置[cpp] view plain copy net: "train_val.prototxt" //深度学习模型的网络结构文件转载 2016-09-21 15:07:53 · 4174 阅读 · 2 评论 -
Caffe学习笔记(三)——Matlab接口
本文主要介绍:Windows下Caffe框架的Matlab接口,即Matlab如何调用Caffe框架中的函数,进行分类、提取特征以及训练。1 官网说明官网:http://caffe.berkeleyvision.org/tutorial/interfaces.html2 相关说明2.1 图像预处理classification.m中,在图像输入CN转载 2016-09-21 15:05:02 · 6497 阅读 · 0 评论 -
深度学习-LSTM网络-代码-示例
一、 LSTM网络原理要点介绍 (1)LSTM网络用来处理带“序列”(sequence)性质的数据,比如时间序列的数据,像每天的股价走势情况,机械振动信号的时域波形,以及类似于自然语言这种本身带有顺序性质的由有序单词组合的数据。 (2)LSTM本身不是一个独立存在的网络结构,只是整个神经网络的一部分,即由LSTM结构取代原始网络中的隐层单元部分。 (3)LSTM网络具有“记忆性转载 2016-09-21 15:01:59 · 5690 阅读 · 1 评论 -
深度学习算法实践15---堆叠去噪自动编码机(SdA)原理及实现
在上一篇博文中,我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节。在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识别为例,用堆叠自动编码机(SdA)来解决这一问题。堆叠自动编码机(SdA)是由一系列去噪自动编码机堆叠而成,每个去噪自动编码机的中间层(即编码层)作为下一层的输入层,这样一层一层堆叠起来,构成转载 2016-09-21 15:00:26 · 2582 阅读 · 0 评论 -
深度学习算法实践12---卷积神经网络(CNN)实现
在搞清楚卷积神经网络(CNN)的原理之后,在本篇博文中,我们将讨论基于Theano的算法实现技术。我们还将以MNIST手写数字识别为例,创建卷积神经网络(CNN),训练该网络,使识别误差达到1%以内。我们首先需要读入MNIST手写数字识别的训练样本集,为此我们定义了一个工具类:[python] view plain copy from转载 2016-09-21 14:57:39 · 1292 阅读 · 0 评论 -
深度学习算法实践11---卷积神经网络(CNN)之卷积操作
卷积神经网络(CNN)主要特性有:稀疏连接和权值共享、卷积操作、池化。在前一篇博文中我们已经讨论了稀疏连接和权值共享,在本篇博文中,我们将介绍卷积操作和池化。正是由于对图像进行卷积操作,卷积神经网络才得以其名,可见卷积操作是其核心。在这篇博文中,我们将讨论卷积操作的实现其及物理含义。首先,我们来了解一下卷积概念。对于一维信号,卷积定义为:式1而我们要处理的图像信号,是二转载 2016-09-21 14:55:35 · 837 阅读 · 0 评论 -
深度学习算法实践9---用Theano实现多层前馈网络
我们到目前为止,我们讨论了神经网络中应用最广的BP算法,虽然想深入浅出的讲解出来,但是回头来看,还是非常复杂,晦涩难懂。这说明神经网络理论上是非常高深的,想要搞明白,是需要一定的IQ和努力的,这点上无法取巧。但是我们不要被数学的复杂性的蒙蔽,其实多层前馈网络,从原理上来说还是很简单的。在深度学习理论出现之前,神经网络尤其是BP网络,一般都只有三层,既输入层、隐藏层和输出层,可以证明,通过引转载 2016-09-21 14:53:56 · 806 阅读 · 0 评论 -
深度学习算法实践6---逻辑回归算法应用
在上篇博文中,我们介绍了深度学习算法的实现,并且以MNIST手写数字识别为例,验证了该算法的有效性。但是我们学习逻辑回归算法的目的是解决我们的实际问题,而不是学习算法本身。逻辑回归算法在实际中的应用还是很广泛的,例如在医学领域的疾病预测中,我们就可以列出一系疾病相关因素,然后根据某位患者的具体情况,应用逻辑回归算法,判断该患者是否患有某种疾病。当然,逻辑回归算法还是有局限性的,其比较适合于转载 2016-09-21 14:52:12 · 1465 阅读 · 0 评论 -
深度学习算法实践5---线性回归算法实现
在学习了基本的Theano的概念之后,我们可以将这些知识用来进行一些简单的应用。在这篇文章中,我们将实现一个简旱的逻辑回归算法。逻辑回归的数学模型还是有些小复杂的,但是其基本概念却是非常简单的,因此,我们在这里只讨论基本概念,而不太涉及复杂的数学理论。我们可以通过一个简单的例子来说明什么是逻辑回归算法,假设在三维空间中,有一组待分类的点,同时有一系平面,代表这些点应该属于的类别,我们将通过转载 2016-09-21 14:50:50 · 921 阅读 · 0 评论 -
深度学习算法实践4---Theano常用技巧
在上一篇文章中介绍了神经网感知器模型中用到的一些算法,在这篇文章中,将继续介绍这些常用的算法,首先是随机数的生成,因为感知器模型必须用随机数来初始化连接权值,其次是求导数,因为感知器学习算法是,会用到梯度下降算法,涉及到求导问题。在讨论随机数生成算法之前,我们先来讨论一下共享变量,这很像C语言中的静态变量,假设我们要对网站的内容的热度进行统计分析,我们用hottness来表示热度,用vis转载 2016-09-21 14:28:24 · 514 阅读 · 0 评论 -
深度学习算法实践3---神经网络常用操作实现
在神经网络中,最基本的单元为神经元。一个神经元可以视为具有i=1,2,...,n个输入,一个偏移量bias的单元,假设输入信号为x1,x2,...,xn,每个输入信号的权重为w1,w2,...,wn,则这个神经元的总体输入为:而通常我们为了计算方便,我们会额外引入一个输入i=0,并设置其输入权重为w0,在数值上等于偏移量bias,则上面的公式可以简化为:下面转载 2016-09-21 14:26:57 · 652 阅读 · 0 评论 -
Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.1
Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.1http://blog.csdn.net/sunbow0Spark MLlib Deep Learning工具箱,是根据现有深度学习教程《UFLDL教程》中的算法,在SparkMLlib中的实现。具体Spark MLlib Deep Learning(深度学习)目录结构:转载 2016-09-21 11:19:10 · 1318 阅读 · 0 评论 -
Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流。 [1]Deep learning简介[2]Deep Learning训练过程[3]Deep Learning模型之:CNN卷积神经网络推导和实现[4]D转载 2016-09-28 17:05:33 · 1458 阅读 · 1 评论