python字符串模糊匹配,并计算匹配分数

thefuzz是一个Python库,用于字符串的模糊匹配。它主要通过SequenceMatcher类计算两个字符串的相似度,该类可以从difflib或python-Levenshtein包中获取。thefuzz提供了ratio方法和process模块,用于计算相似度和从列表中找出最匹配的字符串。process.extractOne函数结合了WRatio或自定义评分函数来确定最佳匹配。
摘要由CSDN通过智能技术生成

一、thefuzz

thefuzz包以前叫fuzzywuzzy,0.19版本开始改名为thefuzz,github地址:

GitHub - seatgeek/thefuzz: Fuzzy String Matching in Python

可以通过命令pip install thefuzz安装此包。用法还是比较简单的:

from thefuzz import fuzz

fuzz.ratio("test", "test!")

>>89

上面两个字符串的相似度为89%。

二、相似度ratio的计算

我们先看看这个包下面的源码,来查看thefuzz是怎么实现模糊匹配的。thefuzz源码包的结构如下:

先看看ratio方法源码:

def ratio(s1, s2):
    s1, s2 = utils.make_type_consistent(s1, s2)

    m = SequenceMatcher(None, s1, s2)
    return utils.intr(100 * m.ratio())

 可以看到,ratio方法用到了一个比较关键的类SequenceMatcher,但是这个类却有可能来自两个不同的地方。

2.1 SequenceMatcher的来源

看看fuzzy.py的头部代码:

import platform
import warnings

try:
    #从当前文件夹的StringMatcher中导入StringMatcher
    from .StringMatcher import StringMatcher as SequenceMatcher
except ImportError:
    if platform.python_implementation() != "PyPy":
        warnings.warn('Using slow pure-python SequenceMatcher. Install python-Levenshtein to remove this warning')
    from difflib import SequenceMatcher

#导入当前文件夹的utils包,.代表当前目录
from . import utils

上面代码涉及了一个导入问题,即先从当前文件StringMatcher中导入StringMatcher,如果导入出现异常,就去difflib中导入SequenceMatcher。

正如上面第一张图中看到的,当然文件夹下面确实有一个叫StringMatcher.py的文件,也看看它前面的代码:

from Levenshtein import *
from warnings import warn

class StringMatcher:
.............
.............

可以看出,这个StringMatcher类引用了Levenshtein包,这个包也是用来计算字符串模糊匹配的,效率上来说,有可能比difflib中的SequenceMatcher快4-10倍。

Levenshtein包是用C语言写的,比较复杂,最初的项目地址:

GitHub - miohtama/python-Levenshtein: The Levenshtein Python C extension module contains functions for fast computation of Levenshtein distance and string similarity

后来这个作者没有维护了,然后由另一个在维护,项目的地址在这里:

GitHub - ztane/python-Levenshtein: The Levenshtein Python C extension module contains functions for fast computation of Levenshtein distance and string similarity

但是,这个页面上,作者也说了,他也7年不维护了,现在没找到新的维护者。

不管怎么说,如果要使用Levenshtein,还是可以安装的:

pip install python-Levenshtein

总结就是,thefuzz有两种实现方式,一种是依赖difflib,另一种依靠 python-Levenshtein。先看简单的difflib。

2.2 difflib包中的SequenceMatcher

首先导入:

from difflib import SequenceMatcher

这个类的主要作用是计算两个匹配字符串的相似度,如下:

s = SequenceMatcher(None, "abcde", "bcde")
s.ratio()

输出值为0.888888。这个是怎么计算的呢?可以查看difflib.py的源代码(我的电脑在D:\ProgramData\Miniconda3\Lib目录下),如下:

def ratio(self):
    matches = sum(triple[-1] for triple in self.get_matching_blocks())
    return _calculate_ratio(matches, len(self.a) + len(self.b))

这个方法涉及到两个比较重要的方法,一个是get_matching_blocks(),这个方法用于获取匹配的字符块。另一个方法_calculate_ratio,用于计算相似度,先看_calculate_ratio,代码如下:

def _calculate_ratio(matches, length):
    if length:
        return 2.0 * matches / length
    return 1.0

上面代码的第三行是关键,matches表示的字符个数,length是两个字符串加起来的总长度。如上面的"abcde"和 "bcde",ratio的计算方法就是2*4/9,即8/9=0.888888。

再看看get_matching_blocks方法。这个方法比较复杂,我们先来看下,这个方法的用法:

s = SequenceMatcher(None, "abchde", "bcde")
print(s.get_matching_blocks())

输出如下:

[Match(a=1, b=0, size=2), Match(a=4, b=2, size=2), Match(a=6, b=4, size=0)] 

什么意思?从方法的名字大概就能看出来,就是获得匹配的所有字符块。上面的代码输出了3个Match对象,Match(a=1, b=0, size=2)的意思是"abchde"从索引1(a=1)开始,"bcde"从索引0(b=0)开始,匹配到2(size=2)个相等字符,即“bc”。

最后一个Match(a=6, b=4, size=0)是固定的,a、b代表两个字符串的长度,size=0固定不变。用代码描述如下:

(len(a), len(b), 0)

但是如果前面字串符已经匹配过,就不会再进行匹配了,如下:

s = SequenceMatcher(None, "bc", "abchdebc")
print(s.get_matching_blocks()) 

输出:

 [Match(a=0, b=1, size=2), Match(a=2, b=8, size=0)]

即“bc”只匹配了第一次的位置,后面就算出现和它一样的字符串,也不再进行匹配。 

三、process模块

从第一张图中可以看到,除了fuzz.py这个文件,还有一个叫process.py的文件,process模块常用的是从候选列表中,返回与目标字符串最相似的一个结果。来看一个简单的例子:

from thefuzz import fuzz,process

choices = ["hello world", "hello china", "hello beijing"]
print(process.extractOne("china",choices))

#输出内容
>>('hello china', 90)

正如上面代码所示,process最常用的用法是从众多字符串中,找到最佳匹配的字符串。

process.extractOne的格式如下:

extractOne(query, choices, processor=default_processor, scorer=default_scorer, score_cutoff=0):

"""
Args:
    query: A string to match against
    choices: A list or dictionary of choices, suitable for use with extract().
    processor: Optional function for transforming choices before matching.
    scorer: Scoring function for extract().
    score_cutoff: Optional argument for score threshold. If the best
            match is found, but it is not greater than this number, then
            return None anyway ("not a good enough match").  Defaults to 0.

Returns:
    A tuple containing a single match and its score, if a match
    was found that was above score_cutoff. Otherwise, returns None.
"""

query:查询的字符串;

choices: 待匹配的字符串列表或者字典;

processor:可选参数,转换器,在匹配前先对choices进行转换处理;

scorer:可选参数,分数器,用于计算分数;

score_cutoff:可选参数,这个参数的作用是设置一个分数门槛(默认为0),如果小于这个分数,就不返回匹配的字符串,而是返回一个None。

extractOne返回的结果是一个tuple元组(最佳匹配结果,分数)。

我们比较关心的一个问题是,这个分数是怎么计算的?看看下面例子:

from thefuzz import fuzz,process

print(fuzz.ratio("china","hello china"))

choices = ["hello world", "hello china", "hello beijing"]
print(process.extractOne("china",choices))

#输出内容
>>62
>>('hello china', 90)

可以看出,fuzz.ratio与process.extractOne分数的计算方式不一样(一个是62分,一个90分)。fuzz.ratio的计分方式,上面已经讲了,下面来看看extractOne的计分方式。

extractOne的源码如下:

def extractOne(query, choices, processor=default_processor, scorer=default_scorer, score_cutoff=0):
    best_list = extractWithoutOrder(query, choices, processor, scorer, score_cutoff)
    try:
        return max(best_list, key=lambda i: i[1])
    except ValueError:
        return None

我们刚才说了,第三个参数scorer是用于计分的,它的默认值为default_scorer,那我们先找到这个default_scorer的值:

default_scorer = fuzz.WRatio

即默认的计分方式为fuzz.WRatio,那么我们回到fuzz.py中,看看WRatio是做什么的?

from thefuzz import fuzz

default_scorer = fuzz.WRatio
default_scorer("china", "hello china")

#输出
>> 90

 可以看出,WRatio的计分方式确实和上面的extractOne相同,都是90分。WRatio的计分方式比较复杂,涉及到一个权重(weight)的概念,它是基于fuzz.ratio()的基础上,做了进一步的校正。

如果我们不想采用WRatio的计分方式,或者想采用fuzz.ratio()的计分方式来提取最佳匹配结果,可以这样:

from thefuzz import fuzz,process

print(fuzz.ratio("china","hello china"))

choices = ["hello world", "hello china", "hello beijing"]
print(process.extractOne("china",choices,scorer=fuzz.QRatio))

#输出
>>62
>>('hello china', 62)

上面代码的计分结果都是62分,因为fuzz.QRatio的内部,除了对参数进行了一些简单的处理以外,直接调用fuzz.ratio()方法返回了结果。所以fuzz.QRatio和fuzz.ratio()的计分方式完全相同。

fuzz.QRatio源代码:

# q is for quick
def QRatio(s1, s2, force_ascii=True, full_process=True):

    if full_process:
        p1 = utils.full_process(s1, force_ascii=force_ascii)
        p2 = utils.full_process(s2, force_ascii=force_ascii)
    else:
        p1 = s1
        p2 = s2

    if not utils.validate_string(p1):
        return 0
    if not utils.validate_string(p2):
        return 0

    return ratio(p1, p2)

通过上面的例子可以看出,如果我们对QRatio、WRatio这些计分方式不满意的话,完全可以自己实现了一个Ratio,将它做为extractOne的参数,实现定制的返回结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值