自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 资源 (2)
  • 收藏
  • 关注

原创 tabBar.list[0].iconPath 文件不存在

在app.json文件中的tabbar按视频里面,做配置如下"iconPath": "asserts/img/time.png","selectedIconPath": "asserts/img/time-1.png", 报错:tabBar.list[0].iconPath 文件不存在 解决方法:将上述改为"iconPath": "pages/asserts/img/t.

2019-02-10 17:56:02 17527 3

原创 训练自己的数据集(二)

主要是图片处理的几个函数第一个get_files(file_dir, ratio): 函数,输入获取文件的路径(注意根据函数的写法,路径中包含不同类别的文件夹),验证集所占比例# step1:返回的四个值,分别是训练集的图片路径数组,训练集图片所属类别的数组;验证集图片路径数组,验证集图片所属类别的数组def get_files(file_dir, ratio): for fi...

2018-11-24 15:28:38 682

原创 通过CNN训练自己的数据集(总)

第一步,将输入的图片分类放在InputImage中,输出的图片统一放在inputdata文件夹,并且生成tfrecord文件。第二步,定义了几个函数,定义的函数在第五步测试时候被调用第三步,定义模型,没有输入,也没有输出,只是定义了几个函数第四步,训练,生成ckpt文件,确定两个路径,分别是train_dir 即shuffle后放在同一个文件夹的路径logs_train_dir 即...

2018-11-24 15:17:13 5948

tf学习(八)—— 论文中CNN的几个模型及实践操作及自己的研究

关于CNN模型借鉴一篇博文,通过卷积层、池化层等结构的任意组合得到的神经网络有无限多种,怎样的神经网络更有可能解决真实的图像处理问题?本文通过LeNet-5模型,将给出卷积神经网络结构设计的一个通用模式。LeNet-5网络模型LeNet-5网络模型的结构及实现代码...

2018-06-19 10:01:12 481

原创 tf学习(十)—— 训练的数据 - 数据预处理

训练自己的图片分类模型有三种方法,1、从无到有,如使用inception,Alexbet 框架,初始化是使用随机值,从头开始训练2、使用准备训练好的模型,如inception-v3,参数已确定,只是在最后进行训练3、同2,只是要不同分类进行神经元,底下部分权值参数学习率低,进行微调这里使用方法2,用指定的模型进行训练...

2018-06-07 21:49:06 568

原创 tf学习(九)—— RNN

函数理解:

2018-06-07 21:44:22 268

转载 tf学习(八)—— 经过自己修改的CNN-MNIST

卷积层的输出效果:输入x:[None,784]x经过reshape变换,得到x_image  [None,28,28,1]x_image经过卷积操作(h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)),得到h_conv1,[None,28,28,32]h_conv1经过池化(tf.nn.max_pool(x,ksize=[1,2,2,1],...

2018-06-02 12:59:58 537

原创 卷积神经网络研究综述 (周飞燕)论文学习笔记

感受野:感受野以某种方式覆盖整个视觉域,它在输入空间中起局部作用,因而能够更好地挖掘出存在于自然图像中强烈的局部空间相关性 LeNet-5是经典的 CNN 结构,后续有许多工作基于此进行改进,它在一些模式识别领域中取得了良好的分类效果 通过实验结果表明网络深度比卷积核大小更重要;当时间复杂度大致相同时,具有更小卷积核且深度更深的 CNN 结构比具有更大卷积核同时深度更浅的 CNN 结构能够获得更好...

2018-06-02 12:16:19 1145

原创 刘大神的学习笔记

1、2、3、4、5、678910111213141516

2018-05-25 16:53:17 285

原创 tf学习(七)—— CNN-MNIST实例学习分析

程序程序为转载的,如下import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist=input_data.read_data_sets("MNIST-data",one_hot=True)#每个批次的大小batch_size=100#计算一共有多少个批次n_batch=mnist.tra...

2018-05-25 15:08:56 1407

转载 tf.nn系列

tf.nn.softmax()当a>b,用softmax函数来计算取a和b的概率,a的softmax值大于b,所以a会经常被取到,而b偶尔会取到。不会想max函数只会取到a。softmax函数定义:假如有一个数组V,Vi是数组V中的第i个元素,那么这个元素的Softmax值就是 经过softmax函数作用将输入映射到(0,1)的区间上,将各个值以概率的形式表现出来。...

2018-05-24 15:52:20 6815

原创 错误锦集

MNIST-NameError: name ‘input_data’ is not defined解决办法其实这是由于导入工具库后没有使用正确别名的原因,只要加入as input_data即可。应改成如下代码:import tensorflow.examples.tutorials.mnist.input_data as input_datamnist = input_data.read_data...

2018-05-21 15:00:32 172

原创 tf学习(六)—— 优化器的使用

使用不同优化器可以得到不同的效果,差别在于收敛速度不同#梯度下降函数,优化器就会按照循环的次数一次次沿着loss最小值的方向优化参数了。train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)#优化器# train_step = tf.train.AdamOptimizer(0.001)#收敛速度比较快# train_st...

2018-05-20 17:21:49 1513

原创 tf学习(五)—— 拟合

分为三种,过拟合是因为训练的数据量较小或者模型太复杂当测试时使用训练数据集与测试数据集,两者出现的差别比较大,说明出现过拟合现象

2018-05-20 17:10:22 293

原创 tf学习(四)—— 损失函数

有几种不同的代价函数,不同的代价函数适用于不同的场景有二次代价函数,交叉熵代价函数(适用于s型曲线,选择合适的代价函数,可节省训练时间),对数似然代价函数# 二次代价函数# loss = tf.reduce_mean(tf.square(y - prediction))#交叉熵代价函数loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_lo...

2018-05-20 15:58:03 1959

原创 tf学习(三)—— MNIST手写识别 下 MNIST手写数据集训练实例

Code# -*- coding:utf-8 -*-import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 载入数据mnist = input_data.read_data_sets("MNIST-data", one_hot=True)# 每个批次的大小batch_siz...

2018-05-19 21:18:17 573

原创 tf学习(三)—— MNIST手写识别 上

MNIST-NameError: name ‘input_data’ is not defined解决办法其实这是由于导入工具库后没有使用正确别名的原因,只要加入as input_data即可。应改成如下代码:import tensorflow.examples.tutorials.mnist.input_data as input_datamnist = input_data.read_data...

2018-05-19 20:55:57 631

原创 数据结构(一) —— 排序

冒泡排序#起泡算法def bubble_sort(lst):    for i in range(1,len(lst)+1):        for j in range(1,len(lst)+1-i):            if lst[j-1]>lst[j]:                lst[j-1],lst[j]=lst[j],lst[j-1]l=[1,43,3432,54]b...

2018-05-07 16:31:56 200

原创 python基础语法(三)——— 字符处理相关的一些函数

做编成题目时遇到的一些函数便记录下来了1、stdin与stdout的学习sys.stdin.readline( )会将标准输入全部获取,包括末尾的'\n'如:import syshi1=input()hi2=sys.stdin.readline()print(len(hi1))print(len(hi2))结果jdfkjkdsdskjkdf88在python中调用print时,事实上调用了sys....

2018-05-06 18:35:28 459

原创 tf学习(二)—— 简单示例程序学习

通过随机数创建一些点通过最小损失函数生成非线性回归函数通过画图工具将原点与生成的预测图画出来

2018-05-06 18:18:36 332

原创 编程题目(一)—— 数串

基础语法见链接:1、stdin与stdout的学习sys.stdin.readline( )会将标准输入全部获取,包括末尾的'\n'如:import syshi1=input()hi2=sys.stdin.readline()print(len(hi1))print(len(hi2))结果jdfkjkdsdskjkdf88在python中调用print时,事实上调用了sys.stdout.writ...

2018-05-06 18:18:06 1057

原创 python基础语法(二)——— plt的一些函数使用

matplotlib1、plt.plot(x,y)plt.plot(x,y,format_string,**kwargs) x轴数据,y轴数据,format_string控制曲线的格式字串 format_string 由颜色字符,风格字符,和标记字符import matplotlib.pyplot as pltplt.plot([1,2,3,6],[4,5,8,1],’g-s’) plt.show...

2018-05-04 11:11:36 260566 7

原创 python基础语法(一)——— numpy的一些用法

1、np.arange生成序列:使用格式为如np.arange[first:step:last)a=np.arange(1,5,.5)print(a)一个例子,比较np.arange与rangea=np.arange(1,5,.5) #步长可以为小数print(a)b=list(range(1,5,2)) #步长只能为整数print(b)结果:E:\Python36\pyth...

2018-05-03 20:51:41 854

原创 tf基础学习(一)

监督学习的两大类为分类问题与回归问题定义常量:tf.constant([1.0,2.0],name="a")定义变量:tf.Variable进行变量声明w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))生成一些随机数:tf.random_normal([2,3],stddev=1,seed=1)定义会话:with tf.Session()...

2018-05-03 17:04:36 905

软件测试工程师培训教程.pdf

本书从软件测试基础理论、测试管理及 BUG 管理工具、Web 测试环境搭建及 数据库知识学习、自动化测试工具等几个方面,结合软件行业的实际情况进行了 分析和讲解。本书共分为 9 章,整体结构清晰,内容丰富,讲述由浅入深,层层 递进。理论与实践相结合。对于希望从事软件测试行业的读者是一本很好的参考 书,而且也可以作为对软件测试工作感兴趣的读者的自学用书。

2018-01-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除