Counting Cliques

Problem Description
A clique is a complete graph, in which there is an edge between every pair of the vertices. Given a graph with N vertices and M edges, your task is to count the number of cliques with a specific size S in the graph. 
 

Input
The first line is the number of test cases. For each test case, the first line contains 3 integers N,M and S (N ≤ 100,M ≤ 1000,2 ≤ S ≤ 10), each of the following M lines contains 2 integers u and v (1 ≤ u < v ≤ N), which means there is an edge between vertices u and v. It is guaranteed that the maximum degree of the vertices is no larger than 20.
 

Output
For each test case, output the number of cliques with size S in the graph.
 

Sample Input
  
  
3 4 3 2 1 2 2 3 3 4 5 9 3 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5 6 15 4 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6


题意:给定n个顶点,m条边,求顶点数为S的完全图,并且每个点的度为最大为20,就是说这个点最多连接20条边,完全图的重要特性:边数 = S*(S-1)/2条。

思路:直接暴力搜索,这里很容易想到就是直接去搜所有的点,找到满足S大小的图,这里肯定会TLE,因为每次就在n里面找,这题的巧妙之处就在,这个度为20,说明这是一个稀疏图,那么我们就用vector存图了,这样我们每次搜索的时候就最多只搜20个点而不是n个点,复杂度减低了不少,再用一个二维数组来显示边的信息(有还是没有),而不是用朴素的数组来存图(这种适合于稠密图)这种搜索的时候相当于在多有的点中搜索;

哈哈,先附一份朴素的TLE 代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <map>

using namespace std;

const int MAX_N = 105;
int gra[MAX_N][MAX_N];
int n,m,s;
int cnt;
int v[15];

void dfs(int ct,int init) {
    if(ct == s) {
        cnt++;
        return;
    }
    if(ct+n+1-init < s) {
        return;
    }
    for(int i = init; i <= n; i++) {//这里是直接用了n个点去搜,怎么可能不TLE呢!!
        v[ct] = i;
        int flag = 0;
        for(int j = 0 ; j < ct; j++) {
            if(!gra[v[j]][i]) {
                flag =1;
                break;
            }
        }
        if(!flag) {
            v[ct] = i;
            dfs(ct+1,i+1);
        }

    }
}

int main() {
    int cas;
    scanf("%d",&cas);
    while(cas--) {
        memset(gra,0,sizeof(gra));
        scanf("%d%d%d",&n,&m,&s);
        int a,b;
        for(int i = 0; i < m; i++) {
            scanf("%d%d",&a,&b);
            gra[b][a] = 1;
            gra[a][b] = 1;
        }
        cnt = 0;
        dfs(0,1);
        printf("%d\n",cnt);
    }
    return 0;
}

很朴素吧,时间复杂度相当的高,但是用稀疏图来写果断AC代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <map>

using namespace std;

const int MAX_N = 105;
vector<int>G[MAX_N];
bool used[MAX_N][MAX_N];
int n,m,s;
int cnt;
int v[12];

void dfs(int ct,int init) {
    if(ct == s) {
        cnt++;
        return;
    }
    if(ct+n+1-init < s) {
        return;
    }
    for(int i = 0; i < G[init].size(); i++) {//这里只搜和这个点相连的点吗,是不是用到了最大的度为20,是不是减少很多时间
        int flag = 0;
        int index = G[init][i];
        for(int j = 0 ; j < ct; j++) {
            if(!used[v[j]][index]) {
                flag = 1;
                break;
            }
        }
        if(!flag) {
            v[ct] = index;
            dfs(ct+1,index);
        }
    }
}

int main() {
    int cas;
    scanf("%d",&cas);
    while(cas--) {
        memset(used,0,sizeof(used));
        scanf("%d%d%d",&n,&m,&s);
        int a,b;
        for(int i = 0; i < m; i++) {
            scanf("%d%d",&a,&b);
            if(a > b) {
                swap(a,b);
            }
            G[a].push_back(b);
            used[a][b] = 1;
            used[b][a] = 1;
        }
        cnt = 0;
        for(int i = 1; i <= n; i++) {
            v[0] = i;
            dfs(1,i);
        }
        printf("%d\n",cnt);
        for(int i = 0; i <= n; i++) {
            G[i].clear();
        }
    }
    return 0;
}

ps:收获不小,什么稀疏图,稠密图。借学长的话说:数据结构都是拿来用的,有时候要考虑时间上谁合适,有时候要考虑空间上谁合适。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值