本文作者系360奇舞团前端开发工程师
在人工智能迅猛发展的今天,Google Chrome 正在通过其前沿的技术推动浏览器体验的革新。特别是 Gemini 大模型作为 Chrome 的核心AI技术之一,正引领着智能化应用的新时代。
本文将深入探讨 Gemini 大模型及其在 Chrome 浏览器中的应用,涵盖 Built-in AI
、DevTools AI
以及如何在网页中直接调用 Gemini API 。这些技术不仅提升了用户的浏览体验,也为开发者提供了强大的工具。让我们一起探索这些创新如何改变我们与互联网的互动方式。
Gemini API
Gemini 是由 Google DeepMind 开发的一系列多模态大型语言模型,它于 2023 年 12 月 6 日发布,定位为 OpenAI 的 GPT-4 的竞争对手。主要有以下特点:
多模态能力:与其他 LLMs 不同,Gemini 的独特之处在于它不是单独在文本语料库上训练的,而是被设计为多模态的,这意味着它可以同时处理多种类型的数据,包括文本、图像、音频、视频和计算机代码。
长上下文理解:Gemini具有复杂的长上下文理解能力,能够有效处理和解释大型文档和复杂代码。这一能力对于需要深度上下文理解的应用至关重要,如高级文档编辑、长篇内容生成和综合数据分析。
高效性和适应性:Gemini设计高效,能够在各种平台上无缝运行,从大型数据中心到设备端应用。这种适应性确保其可以集成到各种环境中,不论操作规模如何,都能提供强大的性能。
增强AI助手:凭借其先进的功能,Gemini显著增强了AI助手的有效性和可靠性。它支持复杂任务的执行,为用户提供更智能和直观的互动。无论是协助编写代码、生成详细报告,还是创建多媒体内容,Gemini都提升了AI助手的标准。
模型种类
Gemini 包含多个模型种类,每个模型针对不同的应用场景和任务进行了优化。这些模型包括:
Gemini Ultra:最大的多模态模型,适用于大规模、高度复杂的任务;
Gemini Pro:性能最佳的多模态模型,具有适用于各种推理任务的功能;
Gemini Flash:最快的多模态模型,具有出色的性能,适用于各种任务;
Gemini Nano:专为边缘计算而构建的最高效模型,如以下介绍的
Chrome Built-in AI
。
实际应用
Gemini的实际应用广泛且多样。在创意产业中,它可以协助生成高质量内容;在技术领域,它有助于开发复杂的软件解决方案;在教育方面,Gemini通过理解和适应个人学生需求提供个性化的学习体验。其多模态能力在医疗行业也同样有价值,能分析各种数据类型,改善诊断流程。
Chrome Built-in AI
Built-in AI
是指将人工智能模型直接集成到用户设备(如台式机、笔记本电脑、移动设备等)中运行,而不依赖于云端服务器进行处理。这种方法结合了设备本地处理能力和AI模型,使得用户可以在本地设备上直接执行AI任务。
它的优点是:
隐私和安全:数据本地处理确保用户隐私和安全。
更高的可用性:即使没有互联网连接,用户也能使用AI功能,提高可用性。
低延迟:本地处理减少数据传输时间,提供更快的响应和更好的用户体验。
它的缺点是:
硬件限制:设备性能差异使得不能保证所有设备都能高效运行复杂的AI模型。
模型大小和下载需求:AI模型可能非常大,占用用户设备的存储空间和流量。
适用场景有限:本地AI模型通常较小,无法处理需要大型模型的复杂任务。
Built-in AI
提供了一种将AI功能直接带到用户设备的方法,具备显著的隐私、安全和低延迟优势。然而,它也面临硬件限制和模型传输的挑战。在实际应用中,可以结合云端和本地处理的混合方法,最大化利用两者的优势。这种方式能够在不牺牲用户体验的情况下,提高AI应用的可用性和安全性。
开启 Built-in AI
准备工作
申请加入体验计划&