3.3.2 计算所有输入 token 的注意力权重
如图 3.11 所示,到目前位置,已经计算了输入中的第二个词元的注意力权重和上下文向量,接下来将扩展这一计算过程,为所有输入计算注意力权重和上下文向量。
图 3.11 高亮的行展示了以第二个输入元素作为查询时的注意力权重。接下来把计算过程推广,以获得所有其他的注意力权重。(请注意,此图中的数字取到小数点后两位。每行中的数值总和应为 1.0 或 100%。)
与之前的步骤一样(见图 3.12),只是修改了一些代码,从而计算所有输入的上下文向量。
attn_scores = torch.empty(6, 6)
for i, x_i in enumerate(inputs):
for j, x_j in enumerate(inputs):
attn_scores[i, j] = torch.dot(x_i, x_j)
print(attn_scores)
图 3.12 在第一步中,增加了 for 循环,用以计算所有输入对的点积。
上述代码计算所得结果如下:
tensor([[0.9995, 0.9544, 0.9422, 0.4753, 0.4576, 0.6310],
[0.9544, 1.4950, 1.4754, 0.8434, 0.7070, 1.0865],
[0.9422, 1.4754, 1.4570, 0.8296, 0.7154, 1.0605],
[0.4753, 0.8434, 0.8296, 0.4937, 0.3474, 0.6565],
[0.4576, 0.7070, 0.7154, 0.3474, 0.6654, 0.2935],
[0.6310, 1.0865, 1.0605, 0.6565, 0.2935, 0.9450]])
张量中的每个元素代表每对输入之间的注意力分数,正如图 3.11 中看到的那样。请注意,该图中的值是经过归一化的,这就是它们与前一个张量中未归一化的注意力分数不同的原因。我们将在之后处理归一化的问题。
在计算前述的注意力分数张量时,使用了 Python 中的 for 循环。然而,for 循环通常较慢,所以,最佳选择是使用矩阵乘法:
attn_scores = inputs @ inputs.T
print(attn_scores)
会得到与之前一样的输出结果。
在图 3.12 的第 2 步中,对每一行进行归一化,使得每一行的数值之和为 1:
attn_weights = torch.softmax(attn_scores, dim=-1)
print(attn_weights)
返回的是注意力权重张量,其数值与图 3.10 中显示的值一致:
tensor([[0.2098, 0.2006, 0.1981, 0.1242, 0.1220, 0.1452],
[0.1385, 0.2379, 0.2333, 0.1240, 0.1082, 0.1581],
[0.1390, 0.2369, 0.2326, 0.1242, 0.1108, 0.1565],
[0.1435, 0.2074, 0.2046, 0.1462, 0.1263, 0.1720],
[0.1526, 0.1958, 0.1975, 0.1367, 0.1879, 0.1295],
[0.1385, 0.2184, 0.2128, 0.1420, 0.0988, 0.1896]])
在使用 PyTorch 的上下文中,像 torch.softmax
这样的函数中的 dim
参数指定了输入张量沿着哪个维度计算函数。通过设置 dim=-1
,指示 softmax 函数沿着 attn_scores
张量的最后一个维度应用归一化。如果 attn_scores
是一个二维张量(例如,形状为 [行, 列]),它将在列上进行归一化,使得每一行的值(在列维度上求和)总和为 1。
可以通过以下方式验证各行的总和确实都为 1:
row_2_sum = sum([0.1385, 0.2379, 0.2333, 0.1240, 0.1082, 0.1581])
print("Row 2 sum:", row_2_sum)
print("All row sums:", attn_weights.sum(dim=-1))
结果是:
Row 2 sum: 1.0
All row sums: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000])
在图 3.12 的第三步也是最后一步中,使用这些注意力权重通过矩阵乘法来计算所有的上下文向量:
all_context_vecs = attn_weights @ inputs
print(all_context_vecs)
输出如下张量,每一行是一个三维的上下文向量:
tensor([[0.4421, 0.5931, 0.5790],
[0.4419, 0.6515, 0.5683],
[0.4431, 0.6496, 0.5671],
[0.4304, 0.6298, 0.5510],
[0.4671, 0.5910, 0.5266],
[0.4177, 0.6503, 0.5645]])
将第上述结果中的二行与 3.3.1 节中计算出的上下文向量 z ( 2 ) z^{(2)} z(2) 进行比较,验证代码的正确性:
print("Previous 2nd context vector:", context_vec_2)
根据输出结果可以看出,之前计算得到的 context_vec_2
与以上输出的张量中的第二行完全一致:
Previous 2nd context vector: tensor([0.4419, 0.6515, 0.5683])
以上是对一个简单自注意力机制代码的完整解析。接下来,将添加可训练权重,使大语言模型(LLM)能够从数据中学习,并在特定任务上提升其性能。