自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(233)
  • 收藏
  • 关注

原创 应用程序无法正常启动(0xc0000022)?

应用程序无法正常启动并出现错误代码0xc0000022,通常与权限或文件损坏有关。

2025-01-23 21:07:56 227

原创 大模型(LLM)的若干科普之问(七):如何隔离LLM微调结果?

隔离微调结果的核心思想是通过技术手段(如模型实例化、参数隔离、适配器层、LoRA 等)确保每个用户的微调操作独立且互不干扰。具体方法包括:- 为每个用户创建独立的模型副本或参数空间。- 使用适配器层或 LoRA 技术,只微调部分参数。- 通过多租户架构和版本控制实现资源隔离和模型管理。

2025-01-21 14:32:22 771

原创 大模型(LLM)的若干科普之问(六):部署在本地的LLM的编程

如果你的本地部署的 LLM(大型语言模型)遵循 OpenAI 的 API 规范,那么程序只需要稍作修改即可适配。主要修改点包括:1. **API 地址**:将 OpenAI 的官方地址 (`https://api.openai.com/v1`) 替换为本地部署的 API 地址。2. **API Key**:如果本地部署的 LLM 不需要 API Key,可以移除或设置为空。3. **模型名称**:将 `model` 参数替换为本地部署的模型名称。

2025-01-17 16:33:17 775

原创 大模型(LLM)的若干科普之问(五):调用LLM涉及哪些参数?

这些参数可以帮助你更精细地控制生成文本的行为和质量。根据你的需求,可以灵活组合这些参数。例如:- 使用 `temperature` 和 `top_p` 控制生成文本的随机性和多样性。- 使用 `presence_penalty` 和 `frequency_penalty` 减少重复内容。- 使用 `stop` 和 `max_tokens` 控制生成文本的长度。

2025-01-17 16:19:02 732

原创 大模型(LLM)的若干科普之问(四):OpenAI 的 API 接口规范与openai库

`openai` 库是 OpenAI 官方提供的 Python 客户端库,支持与 OpenAI API 的交互。通过该库,可以轻松调用 GPT 系列模型、DALL·E、Whisper 等服务。通常来讲,国内LLM都支持openai库!!!

2025-01-17 16:07:46 644

原创 评分卡模型(Scorecard Model)及其特征工程(分箱(Binning)和证据权重WOE)

评分卡模型是一种广泛应用于信用评分、风险管理、市场营销等领域的统计模型。它通过将客户的各项特征(如年龄、收入、信用历史等)转化为分数,最终汇总为一个总评分,用于评估客户的信用风险或其他行为倾向。评分卡模型(Scorecard Model)及其特征工程中常用到:分箱(Binning)和证据权重WOE(Weight of Evidence)。

2025-01-14 15:15:20 819

原创 特征变量的信息值(Information Value, IV)及其它评估特征变量的重要性和区分能力的指标

特征变量的信息值(Information Value, IV)及其它评估一个特征变量的重要性和区分能力的指标,常用于特征工程,帮助判断某个特征是否适合用于模型构建。

2025-01-14 11:40:37 888

原创 RFM分析技术

**RFM分析技术**是一种用于客户价值分析的营销工具,通过评估客户的购买行为来识别最有价值的客户。RFM代表三个关键指标。

2025-01-14 11:07:07 850

原创 核密度估计(Kernel Density Estimation, KDE)是一种非参数统计方法

核密度估计(Kernel Density Estimation, KDE)是一种非参数统计方法,用于估计随机变量的概率密度函数。它通过将每个数据点周围的核函数叠加,生成平滑的密度曲线。

2025-01-13 08:56:22 1192

原创 科普:没有量子计算机怎么办?模拟

:**量子近似优化算法(QAOA)可以在量子模拟器上运行**,即使没有实际的量子计算机硬件。量子模拟器是在经典计算机上运行的软件工具,能够模拟量子计算机的行为,包括量子比特的状态演化、量子门操作和量子测量等。

2025-01-11 14:42:41 539

原创 如何衡量专家评级和评分模型评级之间一致性或相关性?Spearman 秩相关系数(Spearman’s Rank Correlation Coefficient)

Spearman 秩相关系数是一种强大的工具,适用于衡量两个变量之间的单调关系,尤其在数据不满足线性或正态分布假设时。它的应用场景广泛,包括模型验证、性能评估、数据一致性分析、社会科学研究和生物医学研究等。通过使用 Spearman 秩相关系数,可以更全面地理解变量之间的关系,并为决策提供支持

2025-01-10 14:37:41 1044

原创 时间序列分析中,趋势(Trend)和平稳性(Stationarity)及其它关键特征

**趋势**和**平稳性**是理解和分析时间序列数据时最重要的两个特性,它们对建模和预测具有重要影响。

2025-01-10 10:21:02 800

原创 考考你——你理解“周期性:非固定周期的长期波动”么?

“周期性:非固定周期的长期波动”这句话的意思是,**周期性**指的是时间序列中出现的**长期波动**,但这些波动的**周期长度不固定**,即波动的间隔时间不完全一致。这种波动通常与外部因素(如经济周期、政策变化等)相关,而不是像季节性那样具有严格的固定周期(如每年、每月等)。

2025-01-10 10:10:45 403

原创 考考你——你能区分:时间序列分析中,周期性(Cyclicality)和季节性(Seasonality)么?

在时间序列分析中,**周期性(Cyclicality)**和**季节性(Seasonality)**是两个容易混淆但本质不同的概念。它们的主要区别在于**周期长度是否固定**以及**波动的原因**。

2025-01-10 10:06:27 924

原创 考考你——你能区分么:方差、样本方差、均方差

- **方差**:用于衡量单组数据的离散程度,反映数据点与均值的偏离。- **均方差**:用于衡量预测值与实际值的差异,反映预测模型的准确性。

2025-01-09 19:50:38 543

原创 高考成绩处理中,原始分如何得到汇总分(最终成绩)

在高考成绩处理中,原始分通常需要通过一定的转换方法得到汇总分(最终成绩),以便更公平地比较和评价考生的成绩,本文谈到的公式可用于指标评价

2025-01-09 10:29:24 605

原创 身份验证和授权机制(SSO、OAuth、SSH、ABAC、等等)

在信息系统中,身份验证和授权机制是确保系统安全的关键组成部分。OAuth认证在保护用户隐私和安全的同时,实现了第三方应用程序对用户资源的访问和共享。SSH密钥认证是一种既安全又便利的身份验证方式,广泛应用于远程登录、自动化脚本、多用户环境、多台服务器管理以及自动化部署等场景。通过合理配置和使用SSH密钥认证,可以显著提高系统的安全性和工作效率。

2025-01-09 10:07:38 682

原创 大模型(LLM)的若干科普之问(三)

大型语言模型(LLM)通常为用户提供两种使用方式,一是为普通用户提供聊天界面方式;二是为专业用户提供API方式。

2024-12-31 15:31:17 978

原创 “declarative data-parallel operators“与“MapReduce”

“Declarative data-parallel operators”与“MapReduce”在数据处理和并行计算领域具有不同的特点和适用场景。它们之间的关系是相辅相成、相互补充的,而不是相互替代的。在实际应用中,应根据具体的需求和场景选择合适的工具或方法。

2024-12-26 11:47:56 858

原创 考你:递推式与迭代式是一回事么?

递推式与迭代式各自具有独特的特点和适用场景,在解决问题时需要根据具体问题选择合适的算法思想。

2024-12-26 09:27:01 313

原创 收集一些词汇(不定期更新)

SOTA不仅仅是指单一的技术或算法,而是指在某一领域内,经过实践验证,被认为是最有效、最先进的解决方案。PPO旨在改进和简化以前的策略梯度算法,如TRPO(Trust Region Policy Optimization,信任域策略优化),它通过几个关键的技术创新提高了训练的稳定性和效率。PPO是一种用于训练代理的“on-policy”算法,它直接学习和更新当前策略,而不是从过去的经验中学习。ReFramework 是机器人流程自动化(RPA)领域中的一个常用框架

2024-12-14 15:19:13 138

原创 图计算之科普:BSP计算模型、Pregel计算模型、

BSP模型把并行计算抽象为多个模块,包括处理器集合、发送消息的全局通讯网络、各处理器间的路障同步机制。其并行计算的基本执行单元是超级步(Super Step)。一个BSP程序包含多个超级步,每个超级步由本地计算、全局通信和路障同步三个阶段组成。这三个阶段是严格串行的,即所有处理机本地计算结束后统一进行通讯过程,最后执行同步阶段。Subgraph-centric模型关注图中的子图结构,并以子图作为图计算的基本单位。这种模型允许开发者以子图为中心进行编程,从而更直观地处理和分析图数据。文中推荐了一些学习书藉。

2024-12-13 15:39:34 1069

原创 容器化技术:Kubernetes(k8s)、Pod、Docker容器

Kubernetes(k8s)、Pod、Docker容器在容器化技术领域各自扮演着不同的角色,它们之间既存在区别又相互联系。

2024-12-09 20:46:29 945

原创 大模型(LLM)的若干科普之问(二)

**LLM Playground**:这是一个更广泛的术语,指的是那些专门为探索和实验大型语言模型而设计的平台。总之,如果你正在使用的“通义千问”界面让你能够轻松地与模型互动,并且具有一定的可配置性,那么它确实可以看作是一种简化版的LLM Playground。- **使用方式**:就像你现在正在使用的这个对话界面一样,用户可以输入自然语言的问题或指令,然后接收模型的响应。这一步的作用是为接下来的对话设定一个特定的专业领域或角色,有助于模型更好地理解后续问题,并提供更相关、专业的回答。

2024-11-30 12:05:20 815

原创 RESTful API的Flask实现:用Python编写的轻量级Web应用框架

定义RESTful API是一种通过HTTP协议进行数据通信的接口设计方法,广泛用于构建网络应用和服务。风格是的,RESTful API是一种设计风格,它遵循REST原则,使用标准的HTTP方法(如GET、POST、PUT、DELETE)来实现对资源的操作。这种设计风格使得API更加简洁、易于理解和实现,同时也提高了系统的可扩展性和灵活性。

2024-11-29 11:14:16 1057

原创 LLM的微调(fine-tune):client.fine_tuning.jobs.create

将按照以下步骤进行:设置(Setup):加载我们的数据集,并筛选出一个领域以进行微调。数据准备(Data preparation):通过创建训练和验证样例来准备微调所需的数据,并将它们上传到文件端点。微调(Fine-tuning):创建您的微调模型。推理(Inference):使用您的微调模型对新输入进行推理。完成这些步骤后,您应该能够训练、评估和部署一个微调后的gpt-4o-mini-2024-07-18模型。

2024-11-22 21:53:07 437

原创 大模型(LLM)的若干科普之问(一)

LLM在处理自然语言任务时,可能会参考网页等外部资源来获取信息,但这并不等同于检索增强(RAG)技术。RAG旨在通过结合检索和生成,提高LLM生成响应的准确性和信息量。此外,当LLM模型已下载至本地且满足运行要求时,即使在断网情况下,模型仍然可以生成回复。然而,回复的准确性可能受到多种因素的影响,包括模型的训练数据、应用领域、输入数据的格式和内容等。

2024-11-22 11:45:08 648

原创 D3.js(Data-Driven Documents):JavaScript可视化库

虽然D3.js是一个基于JavaScript的库,专门用于Web数据可视化,但你可以创建一个Python应用,该应用通过某种方式(如Flask或Django等Web框架)将D3.js集成到前端页面中。以下是一个简单的示例,展示如何使用Flask框架创建一个Python Web应用,并在前端页面中嵌入D3.js进行数据可视化。你可以根据需要扩展这个示例,从Flask后端传递更复杂的数据到前端,并使用D3.js创建更复杂的可视化效果。D3.js的核心理念是利用数据来驱动文档的生成和操作,使数据可视化成为可能。

2024-11-19 11:16:11 1022

原创 Nginx是一个独立的Web服务器和反向代理服务器

Nginx并不是一个供程序使用的库,而是系统服务运行(像linx一样地存在)。Nginx通过配置文件进行管理和配置。Python程序通常不会直接与Nginx交互以利用其功能,而是通过Nginx的配置和代理规则来间接利用Nginx的能力。你可以使用之前编写的client.py脚本来测试你的FastAPI应用,确保它能够正确地处理GET和POST请求。

2024-11-19 10:46:40 587 1

原创 记录日志:import logging(logging模块LogRecord类)

使用`logging`模块和`LogRecord`类的示例程序,它将日志记录写入文件。这个程序创建了一个名为`my_logger`的logger,并使用`FileHandler`将日志记录写入名为`log.txt`的文件。

2024-11-16 20:44:23 348 1

原创 用pydantic实现数据模型与字符串、与字典间的互转换:demo.model_dump_json() 、demo.model_validate_json()、demo.model_dump()

- `model_dump_json()`:将`pydantic`模型转换为JSON格式的字符串。- `model_validate_json()`:将JSON格式的字符串转换为`pydantic`模型。- `model_dump()`:将`pydantic`模型转换为Python字典。- `model_validate()`:将Python字典转换为`pydantic`模型。

2024-11-13 10:44:22 308

原创 把任务添加到事件循环中:asyncio.get_event_loop().create_task

loop = asyncio.get_event_loop().create_task loop.create_task(layer._listen_message()) loop.run_forever()

2024-11-09 18:41:41 362

原创 for的妙用:四种推导式(Set Comprehension、List Comprehension、Dict Comprehension、Tuple Comprehension)

for的妙用:四种推导式(Set Comprehension、List Comprehension、Dict Comprehension、Tuple Comprehension),过滤器:student_peoples = [name for name in peoples if name in {member["name"] for member in school.peoples}]

2024-11-09 10:05:48 314

原创 外部列表推导式(for hits in res)与内部列表推导式(f: hit.entity.get(f) for f in)

外部列表推导式:for hits in res这部分代码遍历res中的每一个hits列表。内部列表推导式:[{f: hit.entity.get(f) for f in search_config[name]["search_params"]["output_fields"]} for hit in hits]这部分代码遍历每一个hits列表中的每一个hit对象。对于每个hit对象,它创建一个新的字典,该字典包含search_config[name]["search_params"]["output

2024-11-08 12:16:09 348

原创 三种常用数据表示:YAML、JSON和字典格式

YAML、JSON和字典格式都是用于存储和表示数据的强大工具,但它们各有其独特的语法、可读性和用途。在选择使用哪种格式时,应根据具体的需求和场景进行选择。例如,如果需要编写易读的配置文件或描述复杂的数据结构,YAML可能更适合;而如果需要简洁且广泛支持的数据交换格式,JSON可能是更好的选择;在编程中,字典则是存储和访问数据的常用数据结构。

2024-11-07 16:27:33 195

原创 基于装饰器的注册机制实现解耦:用@register装饰器

开发者定义了一个函数developer_function,它接受两个参数并返回它们的和。开发者创建了一个别名user_friendly_alias,并使用@register_observation("user_friendly_name")装饰器将其注册到全局字典observation_registry中。这个别名函数简单地调用了developer_function。应用者现在可以通过别名"user_friendly_name"从observation_registry中获取函数,

2024-11-04 12:55:09 344

原创 基于 Uvicorn 的 FastAPI 应用:uvicorn.run(app, host=“0.0.0.0“, port=5050)

Uvicorn 使用 ASGI 规范来处理异步请求。FastAPI 是一个基于 Starlette 的框架,它也遵循 ASGI 规范。Uvicorn 可以将 FastAPI 应用包装成一个 ASGI 应用,然后启动一个服务器来处理传入的 HTTP 请求。如果用户在运行容器时指定了其他命令,`ENTRYPOINT`指定的命令会被覆盖。例如,`docker run /bin/bash`会覆盖`ENTRYPOINT`指定的命令。

2024-10-29 10:58:47 1148

原创 递归函数来更新配置(YAML格式的配置文件):先加载default_config.yaml,再用custo_config.yamlg更新

**递归更新**: `_update_config`函数递归地遍历用户配置,如果遇到嵌套字典,则递归调用自身来更新默认配置中的相应部分。 **结果**: 最终的`updated_config`字典包含了默认配置和用户配置的组合,其中用户配置覆盖了默认配置中的部分内容。在程序启动时加载配置,允许用户通过自定义配置文件覆盖默认配置,从而实现灵活的配置管理。即:先加载default_config.yaml,再用custo_config.yamlg更新

2024-10-27 20:01:34 336

原创 服务器创建端点、客户端创建连接:用 FastAPI 创建 WebSocket 端点和 HTTP GET 端点,客户端创建 WebSocket 连接,并使用 `asyncio` 库发送和接收消息

客户端使用 Python 的 `websockets` 库创建了一个 WebSocket 连接,并使用 `asyncio` 库发送和接收消息。- 当客户端发送 GET 请求到这个端点时,服务器会调用 `message` 函数,该函数会生成一个包含消息的字典,并调用 `send_to_frontend` 函数将消息发送到前端。- 当客户端连接到这个端点时,服务器会接受连接,并将 WebSocket 对象放入在 `websockets` 中。- 这是一个 HTTP GET 端点,用于处理获取消息的请求。

2024-10-26 22:44:05 474 1

原创 “魔术方法”或“双下划线方法”不用显式调用:__str__、__iter__、__call__。。。

在Python中,有一些特殊方法(通常称为“魔术方法”或“双下划线方法”)是不用显式调用的,它们会在特定的情况下由Python解释器自动调用。这些方法通常以双下划线(__)开头和结尾,并且定义了对象的一些基本行为。例如:__str__、__iter__、__call__。。。

2024-10-26 19:00:16 283

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除