人工干智能
码龄16年
关注
提问 私信
  • 博客:89,151
    89,151
    总访问量
  • 208
    原创
  • 12,763
    排名
  • 1,227
    粉丝
  • 15
    铁粉
  • 学习成就

个人简介:IT行业的一头老黄牛!你说牛不牛!牛!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2008-10-05
博客简介:

qiy_icbc的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    983
    当月
    122
个人成就
  • 获得624次点赞
  • 内容获得10次评论
  • 获得742次收藏
  • 代码片获得125次分享
创作历程
  • 63篇
    2024年
  • 145篇
    2023年
成就勋章
TA的专栏
  • 大模型编程
    10篇
  • Python的高级知识
    52篇
  • Docker的高级知识
  • 《机器学习》
    143篇
  • 周志华【西瓜书】辅导
    143篇
  • 深度学习
  • 安装
    2篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    深度学习
  • 区块链
    区块链
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

174人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

LLM的微调(fine-tune):client.fine_tuning.jobs.create

将按照以下步骤进行:设置(Setup):加载我们的数据集,并筛选出一个领域以进行微调。数据准备(Data preparation):通过创建训练和验证样例来准备微调所需的数据,并将它们上传到文件端点。微调(Fine-tuning):创建您的微调模型。推理(Inference):使用您的微调模型对新输入进行推理。完成这些步骤后,您应该能够训练、评估和部署一个微调后的gpt-4o-mini-2024-07-18模型。
原创
发布博客 2024.11.22 ·
402 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

大模型(LLM)的若干科普之问

LLM在处理自然语言任务时,可能会参考网页等外部资源来获取信息,但这并不等同于检索增强(RAG)技术。RAG旨在通过结合检索和生成,提高LLM生成响应的准确性和信息量。此外,当LLM模型已下载至本地且满足运行要求时,即使在断网情况下,模型仍然可以生成回复。然而,回复的准确性可能受到多种因素的影响,包括模型的训练数据、应用领域、输入数据的格式和内容等。
原创
发布博客 2024.11.22 ·
579 阅读 ·
8 点赞 ·
0 评论 ·
12 收藏

D3.js(Data-Driven Documents):JavaScript可视化库

虽然D3.js是一个基于JavaScript的库,专门用于Web数据可视化,但你可以创建一个Python应用,该应用通过某种方式(如Flask或Django等Web框架)将D3.js集成到前端页面中。以下是一个简单的示例,展示如何使用Flask框架创建一个Python Web应用,并在前端页面中嵌入D3.js进行数据可视化。你可以根据需要扩展这个示例,从Flask后端传递更复杂的数据到前端,并使用D3.js创建更复杂的可视化效果。D3.js的核心理念是利用数据来驱动文档的生成和操作,使数据可视化成为可能。
原创
发布博客 2024.11.19 ·
527 阅读 ·
23 点赞 ·
0 评论 ·
20 收藏

Nginx是一个独立的Web服务器和反向代理服务器

Nginx并不是一个供程序使用的库,而是系统服务运行(像linx一样地存在)。Nginx通过配置文件进行管理和配置。Python程序通常不会直接与Nginx交互以利用其功能,而是通过Nginx的配置和代理规则来间接利用Nginx的能力。你可以使用之前编写的client.py脚本来测试你的FastAPI应用,确保它能够正确地处理GET和POST请求。
原创
发布博客 2024.11.19 ·
554 阅读 ·
22 点赞 ·
0 评论 ·
6 收藏

记录日志:import logging(logging模块LogRecord类)

使用`logging`模块和`LogRecord`类的示例程序,它将日志记录写入文件。这个程序创建了一个名为`my_logger`的logger,并使用`FileHandler`将日志记录写入名为`log.txt`的文件。
原创
发布博客 2024.11.16 ·
308 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

用pydantic实现数据模型与字符串、与字典间的互转换:demo.model_dump_json() 、demo.model_validate_json()、demo.model_dump()

- `model_dump_json()`:将`pydantic`模型转换为JSON格式的字符串。- `model_validate_json()`:将JSON格式的字符串转换为`pydantic`模型。- `model_dump()`:将`pydantic`模型转换为Python字典。- `model_validate()`:将Python字典转换为`pydantic`模型。
原创
发布博客 2024.11.13 ·
186 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

把任务添加到事件循环中:asyncio.get_event_loop().create_task

loop = asyncio.get_event_loop().create_task loop.create_task(layer._listen_message()) loop.run_forever()
原创
发布博客 2024.11.09 ·
285 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

for的妙用:四种推导式(Set Comprehension、List Comprehension、Dict Comprehension、Tuple Comprehension)

for的妙用:四种推导式(Set Comprehension、List Comprehension、Dict Comprehension、Tuple Comprehension),过滤器:student_peoples = [name for name in peoples if name in {member["name"] for member in school.peoples}]
原创
发布博客 2024.11.09 ·
279 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

外部列表推导式(for hits in res)与内部列表推导式(f: hit.entity.get(f) for f in)

外部列表推导式:for hits in res这部分代码遍历res中的每一个hits列表。内部列表推导式:[{f: hit.entity.get(f) for f in search_config[name]["search_params"]["output_fields"]} for hit in hits]这部分代码遍历每一个hits列表中的每一个hit对象。对于每个hit对象,它创建一个新的字典,该字典包含search_config[name]["search_params"]["output
原创
发布博客 2024.11.08 ·
324 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

三种常用数据表示:YAML、JSON和字典格式

YAML、JSON和字典格式都是用于存储和表示数据的强大工具,但它们各有其独特的语法、可读性和用途。在选择使用哪种格式时,应根据具体的需求和场景进行选择。例如,如果需要编写易读的配置文件或描述复杂的数据结构,YAML可能更适合;而如果需要简洁且广泛支持的数据交换格式,JSON可能是更好的选择;在编程中,字典则是存储和访问数据的常用数据结构。
原创
发布博客 2024.11.07 ·
162 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

基于装饰器的注册机制实现解耦:用@register装饰器

开发者定义了一个函数developer_function,它接受两个参数并返回它们的和。开发者创建了一个别名user_friendly_alias,并使用@register_observation("user_friendly_name")装饰器将其注册到全局字典observation_registry中。这个别名函数简单地调用了developer_function。应用者现在可以通过别名"user_friendly_name"从observation_registry中获取函数,
原创
发布博客 2024.11.04 ·
315 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

基于 Uvicorn 的 FastAPI 应用:uvicorn.run(app, host=“0.0.0.0“, port=5050)

Uvicorn 使用 ASGI 规范来处理异步请求。FastAPI 是一个基于 Starlette 的框架,它也遵循 ASGI 规范。Uvicorn 可以将 FastAPI 应用包装成一个 ASGI 应用,然后启动一个服务器来处理传入的 HTTP 请求。如果用户在运行容器时指定了其他命令,`ENTRYPOINT`指定的命令会被覆盖。例如,`docker run /bin/bash`会覆盖`ENTRYPOINT`指定的命令。
原创
发布博客 2024.10.29 ·
676 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

递归函数来更新配置(YAML格式的配置文件):先加载default_config.yaml,再用custo_config.yamlg更新

**递归更新**: `_update_config`函数递归地遍历用户配置,如果遇到嵌套字典,则递归调用自身来更新默认配置中的相应部分。 **结果**: 最终的`updated_config`字典包含了默认配置和用户配置的组合,其中用户配置覆盖了默认配置中的部分内容。在程序启动时加载配置,允许用户通过自定义配置文件覆盖默认配置,从而实现灵活的配置管理。即:先加载default_config.yaml,再用custo_config.yamlg更新
原创
发布博客 2024.10.27 ·
316 阅读 ·
9 点赞 ·
0 评论 ·
5 收藏

服务器创建端点、客户端创建连接:用 FastAPI 创建 WebSocket 端点和 HTTP GET 端点,客户端创建 WebSocket 连接,并使用 `asyncio` 库发送和接收消息

客户端使用 Python 的 `websockets` 库创建了一个 WebSocket 连接,并使用 `asyncio` 库发送和接收消息。- 当客户端发送 GET 请求到这个端点时,服务器会调用 `message` 函数,该函数会生成一个包含消息的字典,并调用 `send_to_frontend` 函数将消息发送到前端。- 当客户端连接到这个端点时,服务器会接受连接,并将 WebSocket 对象放入在 `websockets` 中。- 这是一个 HTTP GET 端点,用于处理获取消息的请求。
原创
发布博客 2024.10.26 ·
393 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

“魔术方法”或“双下划线方法”不用显式调用:__str__、__iter__、__call__。。。

在Python中,有一些特殊方法(通常称为“魔术方法”或“双下划线方法”)是不用显式调用的,它们会在特定的情况下由Python解释器自动调用。这些方法通常以双下划线(__)开头和结尾,并且定义了对象的一些基本行为。例如:__str__、__iter__、__call__。。。
原创
发布博客 2024.10.26 ·
270 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

基于装饰器的注册机制来制作插件:用@register装饰器来注册类

使用@register装饰器来注册类,这种注册机制在多种场景下都非常有用,比如:插件系统:允许用户通过简单的注册机制添加新功能。依赖注入:在大型应用中,可以动态地注入依赖的类实例。配置驱动的实例化:根据配置文件中的字符串动态地创建对象。
原创
发布博客 2024.10.26 ·
418 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

服务器的动态端点:@app.websocket(“/ws/{name}“)

`@app.websocket("/ws/{name}")`定义的端点是动态的,其中`{name}`是一个路径参数,用于接收客户端传递的名称。当客户端尝试连接到`/ws/{name}`路径时,FastAPI会根据客户端提供的名称动态创建一个WebSocket连接。
原创
发布博客 2024.10.25 ·
291 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

Python中类不需要 `__init__` 的情况: dataclasses、 Pydantic 、create

Python中类不需要 `__init__` 的情况: dataclasses、 Pydantic 、create如果你使用 Pydantic 或 `dataclasses`,你通常不需要显式地定义 `__init__` 方法,因为库会为你处理这些细节。另,因你可以在工厂函数中执行一些额外的逻辑,故无需再使用 `__init__` 方法。
原创
发布博客 2024.10.24 ·
347 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

管理应用的生命周期:async def lifespan(app: FastAPI)与app = FastAPI(lifespan=lifespan)

在FastAPI中,lifespan事件用于管理应用的生命周期,包括启动和关闭时的逻辑。通过提供一个自定义的lifespan函数,你可以在应用启动前和执行某些初始化操作,以及在应用关闭前执行清理操作。async def lifespan(app: FastAPI)和app = FastAPI(lifespan=lifespan)之间的依赖关系并不是循环定义,而是应用配置和生命周期管理的一种常见模式。
原创
发布博客 2024.10.24 ·
736 阅读 ·
21 点赞 ·
0 评论 ·
12 收藏

使用OpenAI时就会销耗配额,如何销耗呢?:OpenAI的API密钥,从响应中获得token计数、计算费用

OpenAI的API密钥既用于身份认证也用于加密解密。`openai.api_key = '你的API密钥'`这行代码通常是在Python程序中设置的,用于指定OpenAI API的密钥。然而,将API密钥直接写在程序中确实存在安全风险为了提高安全性,你可以采取以下措施:将API密钥存储在环境变量中,而不是直接写在程序中。你在使用OpenAI时就会销耗配额,如何销耗呢?我们看看客户端的程序片断。
原创
发布博客 2024.10.22 ·
673 阅读 ·
25 点赞 ·
0 评论 ·
14 收藏
加载更多