yolov8训练自己的数据集

本文详细介绍了如何使用YOLOv8训练自定义数据集的全过程,包括使用标注工具制作训练集,XML和JSON标注文件转换为TXT,数据集分割,创建数据加载配置文件,训练参数设置以及模型预测,帮助读者掌握目标检测模型的训练方法。
摘要由CSDN通过智能技术生成


前言

此文以目标检测为例进行说明,使用标注工具对数据集进行标注后生成的标注文件,在使用yolo训练时无法直接使用,必须要转换为yolo可识别的格式文件txt才能进行训练。


一、制作训练集

可以使用robotflow进行标注,直接生成yolo格式的标注文件,但因其为外网链接,速度不快,不怎么使用,通常使用labelimg 、labelme等标注工具对自己的数据集进行标注,网上有很多标注工具可以选择,labelimg标注生成xml文件,labelme标注生成json文件。

二、标签文件格式转换

1.xml转txt

代码如下(示例):


import xml.etree.ElementTree as ET
import cv2
import os
import numpy as np

#类别名称
classes = ['ld', 'st'] 

#归一化处理
def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    y = y * dh
    w = w * dw
    h = h * dh
    return (x, y, w, h)

# xml文件转txt文件
def convert_annotation(xmlpath, xmlname):
    with open(xmlpath, "r", encoding='utf-8') as in_file:
        txtname = xmlname[:-4] + '.txt'
        txtfile = os.path.join(txtpath, txtname)
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        # 获得宽
        w = int(size.find('width').text)
        # 获得高
        h = int(size.find('height').text)
        res = []
        for obj in root.iter('object'):
            cls = obj.find(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值