前言
此文以目标检测为例进行说明,使用标注工具对数据集进行标注后生成的标注文件,在使用yolo训练时无法直接使用,必须要转换为yolo可识别的格式文件txt才能进行训练。
一、制作训练集
可以使用robotflow进行标注,直接生成yolo格式的标注文件,但因其为外网链接,速度不快,不怎么使用,通常使用labelimg 、labelme等标注工具对自己的数据集进行标注,网上有很多标注工具可以选择,labelimg标注生成xml文件,labelme标注生成json文件。
二、标签文件格式转换
1.xml转txt
代码如下(示例):
import xml.etree.ElementTree as ET
import cv2
import os
import numpy as np
#类别名称
classes = ['ld', 'st']
#归一化处理
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
y = y * dh
w = w * dw
h = h * dh
return (x, y, w, h)
# xml文件转txt文件
def convert_annotation(xmlpath, xmlname):
with open(xmlpath, "r", encoding='utf-8') as in_file:
txtname = xmlname[:-4] + '.txt'
txtfile = os.path.join(txtpath, txtname)
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
# 获得宽
w = int(size.find('width').text)
# 获得高
h = int(size.find('height').text)
res = []
for obj in root.iter('object'):
cls = obj.find(