20210223——某厂大数据开发面经

本文探讨了SparkSQL中不同的JOIN类型以及如何进行Hive的性能优化。同时,讨论了在大数据处理中如何确保exactly-once语义,并分析了Hive字段类型不匹配可能带来的问题。此外,还涉及到了Hive的执行计划解析及其重要性,以及SS实时与离线任务的整合策略。
摘要由CSDN通过智能技术生成

1、SparkSQL有几种join?
2、Hive你怎么做的优化?
3、你确定你这么做真的能保证exactly-once?
4、Hive字段类型不同,会发生什么事?
5、Hive的执行计划看过吗?里面都有什么内容?你怎么看的
6、SS的实时是怎么和离线关联起来的?api吗?任务每天重启?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值