虽然只参与了几个小型的数据比赛,成绩也十分惨淡,但还是有一些小小收获记录下来以便查阅。
1、比赛流程:
问题分析-》样本处理-》特征抽取-》模型选择/实现-》调参测试-》提交
当然,与软件工程相同,比赛的过程也是迭代进行的,每次提交之后可能就要重新走一遍流程以发现改进点。
以目前浅薄的经验来看,最重要的步骤是特征抽取、模型选择与调参,之后会进行详细介绍
2、注意事项:
1》戒骄戒躁:一两次提交、甚至一两次比赛的结果都不要看的太重,关键是从中学会解决该类问题的基本方法,发现自己的弱点和不足。
2》沟通交流:最好能有固定的队伍、广泛的交流圈子,很多时候困扰你的问题别人一两句话就能让你走出误区。
3》确定目标:如果你志在奖金或者排名那就不要拘泥于模型的实现,要综合考虑问题的各个方面,针对具体问题需要考虑不同的解决方案,如果你是抱着学习的目的来的,那就要多尝试、多实践,多整理,充分的体会各种不同模型的区别,理解机器学习解决问题的基本方法。