自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(561)
  • 收藏
  • 关注

原创 2025最新最全【大模型学习路线规划】零基础入门到精通_大模型 开发 学习路线、

目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性、软件与工具的进步。生成式模型与大语言模型。Transformer架构解析。预训练、SFT、RLHF。目标:掌握大模型开发所需的编程基础和工具。内容:Python编程基础。Python常用库和工具。提示工程基础。目标:通过实战项目深化理论知识和提升应用能力。

2025-02-04 15:46:29 854

原创 聊聊Agentic RAG,可能是目前最强大和灵活的RAG实现方式

经典RAG应用的范式与架构已经非常流行,我们可以在很短的时间内借助成熟框架开发一个简单能用的RAG应用。在【RAG实战篇系列】文章中,风叔也介绍了一个最最基本的Naive RAG系统,以及优化RAG系统的十八般武器。但是,实际应用场景要远比理论中复杂。以企业级应用场景为例,企业内部有大量不同来源与类型的文档,比如word、pdf等非结构化数据,以及mysql数据库这种结构化数据。假设,我们现在需要在这些文档之上构建一个知识密集型的应用或工具,包括:

2025-02-03 09:15:00 998

原创 35页综述:Agentic RAG七大架构首次曝光!

嘿,大家好!这里是一个专注于AI智能体的频道~今天给家人们分享一篇35页的最新Agentic RAG综述!图特别多,应该有很多小伙伴喜欢。1. 为什么需要Agentic RAG?传统的LLMs虽然强大,但受限于静态训练数据,往往无法适应动态、实时的查询需求。虽然 RAG 通过引入实时数据检索提供了一定改善,但其静态工作流程仍然存在明显短板:

2025-02-02 08:15:00 543

原创 前端程序员转行大模型,我可不想被裁了_前端ai大模型

前端程序员转行到大模型领域,需要学习一系列新的技能和理论知识。以下是一个学习路径的概览

2025-02-01 11:15:00 1684

原创 【NLP修炼系列之Bert】Bert多分类&多标签文本分类实战(附源码)

本文是Bert文本多分类和多标签文本分类实战,其中多分类项目是借鉴github中被引用次数比较多的优秀项目,多标签文本分类是我在公司业务中实际用到的线上项目,今天把两个项目都介绍给大家,其实Bert做文本分类项目都大差不差,两个项目的项目结构也都差不多,这样更容易被初学者迅速入手和理解。文本多分类任务用到的数据集是THUCNews数据集中抽取20w新闻标题,文本长度在20-30之间,一共10个类别,每个类别2万条。类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。

2025-01-31 07:00:00 953

原创 大模型书籍李开复周鸿祎力荐《实战AI大模型》!NUS尤洋教授首发新书深入浅出热门AI大模型,新手到专家的必备指南

大模型的复杂性和技术的不断更新,如何迅速理解不端更新迭代的大模型,准确地掌握这些技术,也成为不小的挑战。这些模型的学习和应用对于任何希望进入AI领域的人来说都是必不可少的,它们不仅为AI理论和实践提供了坚实的基础,而且还直接影响了AI技术的未来发展方向。从基础理论到最前沿的实践应用,全面覆盖了AI大模型领域,包括Transformer模型、BERT、ALBERT、T5、GPT系列、InstructGPT、RLHF、ChatGPT、GPT-4、Google的PaLM以及视觉模型等关键技术。

2025-01-30 09:45:00 1953

原创 从零开始使用 Hugging Face 的开源模型_hugging face模型

看到这篇文章的各位想必对 Hugging Face 都有所耳闻了。作为 AI 时代的开源重要阵地,我们可以在这里找到特别多的一手开源模型,直接部署到本机进行调试。但是究竟怎么开始,尤其是对于非常多没有接触过 AI 模型的同学来说,从直接使用现成的 ChatGPT 到部署一个本地 AI 模型将是一个非常大的跨度,很多人直接就望而却步了,也很多人卡在实现第一个本地部署模型上,这里面的原因包括但不限于代码部署、下载模型失败等等。

2025-01-29 11:45:00 740

原创 如何搭建基于大模型的智能知识库_大模型知识库构建

基于RAG与LLM的知识库作为目前最有潜力的企业端大模型应用之一,从技术角度可以看到,建设方案已经完备;从业务角度,最终的应用效果和业务价值还需要观察,并通过业务侧的反馈不断地促进建设方案的进一步优化,比如增加对多模态知识的处理能力等。让我们共同期待这类应用普及那一天的到来。

2025-01-28 06:30:00 694

原创 太绝了,这本Ai大门的敲门砖!!码住

这本书旨在帮助读者深入理解生成式AI的工作原理,并掌握实际应用这些技术的技能。生成式AI就算玩出花,目前就是生成文本、生成图像、生成声音,这本书竟然一次性把这些模型讲完了,包括tranformer和diffusion, 文中有图有文有代码,我亲测代码可跑性很高!!!而且篇幅短,由总到分的讲解模型的每一个部分,结构性可读性很强果想快速学习生成式AI的模型,这本书一定要成为你的第一本书。

2025-01-27 08:30:00 337

原创 AI机器人本地免费部署(部署Llama 3.1详细教程)

昨日,Meta公司发布了人工智能模型——Llama 3.1。那么Llama 3.1 405B的效果怎么样?我们来对比一张图,横向对比一下GPT-4。可以看出,Llama 3.1 405B在各类任务中的表现可以与GPT-4等顶级的模型相差无几。那么,我们怎样才能用到这款强大的Llama 3.1 405B模型呢?最直接的方式是通过Meta.ai平台,但目前这一途径仅对美丽国的用户开放。那有无适合平民用的大模型嘞。接下来我们将在本地部署Llama 3.1 8B(环境所迫)1.环境准备。

2025-01-26 07:30:00 888

原创 大模型技术实践 | RAG 精确应对大模型敏感问题知识幻觉难题

在大模型的实际应用落地过程中,会遇到所谓的幻觉(Hallucination)问题。对于语言模型而言,当生成的文本语法正确流畅,但与原文不符(Faithfulness)或事实不符(Factualness)时,模型便出现了幻觉的问题。在传统自然语言处理中,幻觉一般指模型输出与原文信息存在冲突,或添加不在原文的额外信息。在大模型中,不局限于特定任务,幻觉往往指的是与世界知识不一致,即不符合事实。尤其是在对输出内容真实性的容忍度较低时,大模型的幻觉现象会严重影响其落地效果。因此,纠正这些幻觉现象,是一个值得长期关注

2025-01-25 21:59:18 980

原创 2025爆火全网LLM大模型书籍:从零构建大型语言模型,重磅开源教程!!标星20.3K

自 ChatGPT 发布以来,大型语言模型(LLM)已经成为推动人工智能发展的关键技术。近期,机器学习和 AI 研究员、畅销书《Python 机器学习》作者 Sebastian Raschka 又写了一本新书 ——《Build a Large Language Model (From Scratch)》,旨在讲解从头开始构建大型语言模型的整个过程,包括如何创建、训练和调整大型语言模型。对GPT大模型感兴趣的有福了!这本书的名字叫也就是。

2025-01-25 21:55:55 817

原创 人人都能读懂的大模型入门指南 - Transformer与Attention机制

本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。

2025-01-23 10:58:49 792

原创 记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法

实验结果表明,记忆层技术在提升大语言模型性能方面具有显著优势。随着大语言模型逐渐接近计算资源和物理极限,这项技术的应用价值将愈发凸显。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

2025-01-23 10:52:48 489

原创 【2025大模型算法面试必看】2024大模型算法面试题总结,看这篇就够了!!

花了60天整理的大模型面试八股文,178页,从基础面,到进阶、LangChain、Agent、微调,以及大模型LLM面试常考题,完整总结,现在无偿分享给大家!!

2025-01-22 11:30:22 1197

原创 知识图谱 + 大模型知识整合:将知识图谱文本证据映射到大模型向量空间,解决N个同义词,增强深层语义理解和关联推理_github 医学知识图谱

知识图谱 + 大模型知识整合:将知识图谱文本证据映射到大模型向量空间,解决N个同义词,增强深层语义理解和关联推理

2025-01-22 11:22:49 993

原创 AI赋能电商:从个性化推荐到智能化运营

个性化推荐系统是AI技术在电商中最常见的应用之一。通过分析用户的浏览历史、购买记录、搜索行为等数据,AI算法能够精准地预测用户的兴趣和需求,从而向用户推荐最符合其偏好的商品。这种个性化的推荐不仅能够提高用户的购买转化率,还能增强用户的黏性和满意度。案例分析:亚马逊的个性化推荐亚马逊是最早应用个性化推荐系统的电商平台之一。其推荐系统基于协同过滤、深度学习等多种算法,能够实时分析用户的购物行为,生成个性化的推荐列表。据统计,亚马逊的个性化推荐系统贡献了其销售额的35%以上。

2025-01-21 13:43:23 1060

原创 大模型书籍推荐:《AI赋能:企业智能化应用实践》企业级 AI智能化赋能应用,附PDF

本书是一本介绍AI技术在企业生产和运营过程中实践应用的图书,全书共6章:智能化应用的概念,智能化应用的价值、挑战及发展趋势,智能化技术概述,多行业智能化应用业务场景分析,智能化应用的项目化实施和智能化应用的实践案例。本书旨在为企业提供实用的AI应用指南,深入介绍了智能化应用的开发和实施过程,包括技术架构、数据管理、算法选择、模型训练和评估等内容,并结合实际案例分享经验和方法论,帮助读者在实践中掌握建立智能化应用的关键技术和管理能力。

2025-01-21 12:00:51 804

原创 GraphRAG + GPT-4o mini 低成本构建 AI 图谱知识库

GraphRAG+GPT-4omini低成本构建AI图谱知识库。更好的效果,更低的价格,听起来是不是像梦呓?

2025-01-20 11:47:48 776

原创 GraphRAG工程落地成本详细解读和实例分析

GraphRAG提供了一种变革性的方法来支持RAG应用,使组织能够从他们的数据中释放新的价值。虽然构建图形的成本高于传统的嵌入方法,但所带来的价值远远超过这些开支。随着技术的发展和新模型的出现,GraphRAG的成本预计将下降,使其成为希望最大化数据价值的组织更加可行的解决方案。GraphRAG解决方案加速器使您可以轻松入门,基准自己的数据集成本,并开始在自己的应用中实施这一新兴技术读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。

2025-01-20 11:44:08 774

原创 28岁程序员转行AI产品经理?我做了哪些准备,收藏这一篇就够了!_软件开发转产品经理

最近收到很多网友发给我的私信,说自己在AI领域做了5-6年开发,现在想转型做AI项目经理,但不知道从何下手,有没有什么好的建议?今天,我就来聊一聊这个问题。

2025-01-15 10:59:16 1272

原创 面试被问RAG开发痛点,万能答法!

本文探讨了开发 RAG 流水线过程中的 12 个痛点( 论文中的 7 个痛点和另外 5 个痛点 ),并针对所有痛点提出了相应的解决方案。请参阅下图,该图改编自论文《 设计检索增强生成系统时的七个故障点 》中的原图:将所有 12 个 RAG 痛点及其建议的解决方案并列在一张表格中,我们就得出了以下结果:虽然这份清单并非详尽无遗,但它旨在阐明 RAG 系统设计和实施所面临的多方面挑战。

2025-01-15 10:57:33 947

原创 LLM PEFT微调方法最全理论篇

在调研过程中,感觉现在用的多的都是LoRA派系的微调方法,比如LLaMA-Factory就拿它LoRA去对比ChatGLM的P-Tuning,结果显示3.7倍的加速比,更高的Rouge分数,使用QLoRA还进一步减低GPU显存消耗。图:LLaMA-Factory的性能对比。

2025-01-13 22:47:43 671

原创 AI 智能体(AI Agent):解决问题的 “机器” 助手

在当今科技持续演进的浪潮中,随着AI与AIGC的发展,一种更为高级的AI应用形态——AI Agent正逐渐崭露头角。AI Agent的概念与能力Agent在英文里是“代理人”的意思,AI Agent便是一种能够替代人类执行任务的智能助手。它汇聚了感知、学习、推理、决策、内容生成等多种AI能力,像一个智能“多面手”。并且,它可以与人类进行自然语言交互,依据人们的不同需求,提供个性化、多样化的服务。LLM支持下的AI Agent关键组成部分**(

2025-01-13 22:40:10 979

原创 三行代码构建AI Agent,释放LLM潜能!Hugging Face Smolagents让AI自己动手!

还在为大型语言模型(LLM)的被动性而苦恼吗?想让你的AI不仅能说会道,还能“手脚并用”地解决实际问题?现在,抱抱脸(Hugging Face)推出的Smolagents框架,只需几行代码,就能让这一切成为可能!它赋予LLM强大的代理能力,让AI化身Agent,主动探索世界,完成复杂任务!告别繁琐的配置和复杂的代码,Smolagents让LLM的潜能触手可及!

2025-01-13 22:33:40 898

原创 怎么学习设计和训练一个大模型——也就是神经网络?

学习一门技术,先找一套工具和理论研究下去;千万不要反复横跳,什么都想学大模型作为未来重要的发展方向,很多人想学习大模型技术,但又苦于无从下手;而本公众号前前后后也写过一些怎么学习大模型技术的方法论;但大部分都是从应用的角度作为切入点。但是,有一个问题就是,如果你是一个技术从业者,想学习和设计一款属于自己的大模型,应该怎么做?设计一个自己的大模型大模型作为一门快速发展的新型技术,其理论与实现也是日新月异;因此,对我们大部分人来说很难紧跟大模型的发展趋势,因此我们需要做的是先从一个技术点作为切入。

2025-01-13 13:34:25 843

原创 2025年想高薪!普通人转行做AI,试试这5步!

你有没有想过,有一天你可以转型成为AI专家,而且还能拿到高薪?在当今快速发展的科技时代,AI大模型 已经成为各行各业的核心驱动力。许多人对AI领域充满了浓厚的兴趣,渴望能够在这个充满机遇的领域中大展拳脚。面对这个看似高深莫测的领域,很多人却感到无从下手,不知道如何才能成功转型成为一名AI专家。

2025-01-13 11:55:28 1256

原创 一键部署本地私人专属知识库,开源免费!可接入GPT-4、Llama 3、Gemma、Kimi等几十种大模型,零代码集成。

在MarKB应用界面内,点击系统设置,然后再进入模型设置界面,在这里,你可以看到MarKB目前能够支持的大语言模型,如百度千帆、Azure OpenAI、ChatGPT、ollama等类型的模型。下一步,在本地设备上,创建一个存放知识库数据的文件夹,并记住这个文件夹的路径,随后回到刚才的Docker界面,找到Volumes项,这这里填入刚才的知识库路径,随后在。,在这里,你需要为将创建的知识库命名,并输入几段简要内容进行描述,随后就是根据自己的需要创建自己的知识库系统,这里的知识库系统有两种,

2025-01-10 11:38:53 1182

原创 9.3K Star!一款特别好用的 AI 知识库问答系统:MaxKB

MaxKB是一个由国人开发的基于 LLM 大语言模型的知识库问答系统。开箱即用、模型中立、灵活编排,支持快速嵌入到第三方业务系统。这款开源项目让普通人也能快速搭建属于自己的 AI 知识库问答系统。无论你是新手小白还是技术大牛,MaxKB 都能在 5 分钟内帮助你实现这一目标。为自己的网站或业务增加一个 AI 助手,在线下可是超级香的。

2025-01-10 11:36:46 822

原创 【产业研究】《2024年中国智能算力行业白皮书》|附57页PDF文件下载

2024中国智能算力行业白皮书。智能算力,是数字经济发展的重要基础性资源。短期来看,受制于美国的科技禁运政策,长期来看,国产人工智能芯片在设计和制造方面还存在技术差距,以及我国人工智能企业大模型原创力的暂时性缺失,我国距离实现智算资源的完全国产化还有一段距离。为了谋求可用算力资源在物理空间的释放和高效利用,国家层面持续推进“东数西算”工程的实际落地和实践,建设全国一体化算力网络枢纽节点。因此,智算产业的相关布局会提升到国家未来科技发展的战略性高度。

2025-01-09 20:32:07 775

原创 如何用GraphRAG + GNN解锁知识图谱的隐藏价值?

GraphRAG 为大语言模型(LLMs)提供了“推理支架”,通过结构化的知识图谱(KG)支持其推理过程。试想一下,追踪“因果路径”——从发达经济体的财政紧缩到新兴市场的通货膨胀。借助 GraphRAG,可以减少生成幻觉内容(hallucination),并获得意想不到的洞见。但能否更进一步?通过将图注意网络(GATs)集成到 GraphRAG 中,我们可以动态地将上下文与每个查询对齐,从而释放前所未有的推理能力。

2025-01-09 20:23:01 854

原创 2025值得入坑的五大AI Agent框架!

在 AI 大模型新时代,AI Agent 多智能体系统(Multi-Agent)技术正日益受到众多科技巨头的瞩目。伴随着 OpenAI 的 Swarm、微软的 Magentic-One 等框架的推出,这一领域的发展变得更为错综复杂。面对众多的选项,选择一个最匹配自身需求的 Multi-Agent 框架成为了众多开发者与企业需要解决的关键问题。本期我们将深入分析市场上最受欢迎的五款 AI Agent 多智能体框架,包括,旨在为大家的框架选择提供指导与参考。**2**__—

2025-01-08 11:30:30 1203

原创 斯坦福李飞飞最新巨著《AI Agent综述》

这篇论文是由李飞飞等14位来自微软、斯坦福、UCLA、华盛顿大学的大佬联合撰写的,一共有80页,论文研究的内容包括:多模态AI系统的普及性、AI agent和agent AI的区别、基础模型的应用、环境嵌入的重要性、多模态感知能力等。

2025-01-08 11:26:52 2799

原创 【保姆级教程】零代码本地搭建AI大模型,详细教程!普通电脑也能流畅运行,中文回答速度快,回答质量高

这篇教程主要解决:1). 有些读者朋友,,比如电脑没有配置GPU显卡,还想在本地使用AI;2). Llama3回答中文问题欠佳,更强的AI大模型。3). 想成为AI开发者,开发一款AI大模型的应用和产品,如何选择API的问题。我相信,大家平时主要还是以中文问答为主,安装一个中文回答更强的AI,就显得更很有必要。这篇教程。1 通义千问大模型的优势近日阿里云正式发布通义千问2.5,模型性能全面赶超GPT-4 Turbo,成为。

2025-01-07 11:39:33 1016

原创 大语言模型中的查询优化技术:从基础到前沿的全景解析

在人工智能的浪潮中,大语言模型(LLMs)如ChatGPT等已经展现出了令人惊叹的能力,能够生成流畅的文本、回答复杂的问题,甚至进行多轮对话。然而,尽管这些模型在通用任务上表现出色,但在处理特定领域或需要最新信息的查询时,它们仍然面临着“幻觉”问题——即生成看似合理但实际不准确的内容。为了解决这一问题,检索增强生成(Retrieval-Augmented Generation, RAG)技术应运而生。RAG通过动态检索外部信息来增强LLMs的回答能力,从而减少不准确内容的生成。

2025-01-07 11:34:09 1033

原创 2025年最新调研综述(88页)——知识图谱增强大模型GraphRAG【密歇根大学、Adobe、Meta、亚马逊等】

摘要检索增强生成(RAG)是一种强大的技术,通过从外部来源检索额外信息(如知识、技能和工具)来增强下游任务的执行。图谱由于其固有的“由边连接的节点”特性,编码了海量的异构和关系信息,使其成为RAG在巨大现实世界应用中的黄金资源。因此,我们最近见证了越来越多的关注点在于将图谱配备给RAG,即GraphRAG。然而,与传统的RAG不同,后者可以在神经嵌入空间中统一设计检索器、生成器和外部数据源,图谱结构数据的独特性(如格式多样化和领域特定的关系知识)在为不同领域设计GraphRAG时带来了独特且重大的挑战。

2025-01-06 14:52:40 962

原创 用通俗易懂的方式讲解:大模型面试八股含答案

前面在4.中提到了Lora,我也曾在别的回答中提过Lora真是本世纪最美女名,因为真的是个人微调的一大福音。我在这里也具体来讲讲:首先肯定是要搬上来这张图的:

2025-01-06 14:36:51 845

原创 本地部署GLM-4-9B清华智谱开源大模型方法和对话效果体验

根据官方的评测报告,GLM-4-9B在对话、多模态等方面要比Llama-3-8B强不少,根据老牛同学本地部署对话的验证结果来看,对话的输出速度实在太慢了,简直就是在挤牙膏,一个字一个字的往外输出。至于GLM-4-9B的多模态、工具调用、代码解释等能力,老牛同学本次就不一一演示了,GLM-4官方的GitHub代码库有很多Demo代码,大家可以对代码调整后尝试体验一下~在大模型时代,我们如何有效的去学习大模型?

2025-01-05 09:45:00 923

原创 【保姆级教程】手把手教你本地部署清华大模型 ChatGLM3

ChatGLM 是一个开源的、支持中英双语的对话语言模型,由智谱 AI 和清华大学 KEG 实验室联合发布,基于 General Language Model (GLM) 架构,具有 62 亿参数。ChatGLM3-6B 更是在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上增加了更多特性。虽然,目前 ChatGLM 比 GPT 稍有逊色,但是,在部署后可以完全本地运行,完全由自己掌控!本文介绍怎么在 Linux 服务上部署 ChatGLM3 服务,并通过多种方式使用本地部署地大模型。

2025-01-04 10:10:55 1080

原创 大模型电子书学习推荐 | 12本大模型书籍(附pdf版),看完少走一半弯路

随着AI在越来越多的行业被应用,AI赋能的价值逐步体现出来。本书从AI的本质出发,介绍AI技术过往的发展历程和最新的理论成果,然后讲解如何站在移动互联网和大数据的基础上,系统地学习、应用AI技术。本书希望向读者提供学习AI技术的资料、路径,以及打磨AI产品的观点、思路。此外,本书通过介绍笔者接触、打磨AI产品的实际经历,给大家指出AI赋能过程中需要避免的“坑”,期待我们在AI时代共同发展自己、发展生活,在未来遇到更好的AI产品、更好的自己。

2025-01-04 10:05:13 1651

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除