自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(578)
  • 收藏
  • 关注

原创 零基础学AI大模型要多久?真的能学会吗?

随着人工智能技术的迅猛发展,AI大模型成为了当前最热门的技术领域之一。很多人对AI大模型既充满好奇又感到陌生,特别是对于那些完全没有编程基础的人来说,从零开始学习AI大模型似乎是一项艰巨的任务。但实际上,只要有足够的决心和正确的方法,任何人都有可能成为AI大模型领域的专家。本文将探讨从零基础学习AI大模型需要多长时间,以及如何确保你能够真正学会。

2025-02-19 22:59:14 943

原创 什么是大模型?一文彻底搞懂大模型的基本概念

大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。

2025-02-19 22:54:34 742

原创 LLM模型之高质量数据选择和微调方法

Entropy Law:多数据集组合时的数据筛选方法数据是大型语言模型(LLM)的基石。大多数方法侧重于评价单个样本的质量,而忽略了样本间的组合效应。受LLMS信息压缩特性的启发,我们发现了一个将LLM性能与数据压缩比和第一个epoch训练损失联系起来的“熵定律”,它们分别反映了数据集的信息冗余度和对该数据集中编码的固有知识的掌握。基于熵定律的结果,我们提出了一种非常有效和通用的数据选择方法ZIP来训练LLMS,该方法旨在对压缩比较低的数据子集进行优先排序。

2025-02-18 13:53:29 399

原创 AI大模型岗位月薪最高6万元!实探上海2025年春季首场大型招聘会

在DeepSeek搅弄大模型市场风云之际,AI人才也再度被卷入热潮。2月14日,上海2025年春季首场综合性大型招聘会在上海体育馆举行。时报记者实探发现,(AI)领域的岗位薪酬最高,大模型数据开发工程师、架构开发工程师、训练平台工程师等关键岗位最高月薪可达6万元。多位受访人士告诉记者,DeepSeek火出圈,再次激活了AI人才市场,吸引众多人才积极投身其中,招聘企业数量也在增加。但由于头部公司重金求才的虹吸效应,企业招聘难度也直线上升。

2025-02-18 13:47:25 691

原创 35岁程序员转行大模型:详细学习路线、岗位推荐,从零基础到精通2025最新

随着人工智能技术的快速发展,特别是大模型(如语言模型、图像生成模型等)在各行各业的应用日益广泛,越来越多的专业人士考虑转向这一充满潜力的新领域。对于35岁的程序员而言,转行至大模型不仅能够提供职业发展的新机遇,还能帮助他们保持技术前沿性,增强自身竞争力。

2025-02-17 11:24:44 479

原创 利用DeepSeek-R1构建简单的本地知识库

初期接触LLM即大语言模型,觉得虽然很强大,但是有时候AI会一本正经的胡说八道,这种大模型的幻觉对于日常使用来说具有很大的误导性,特别是如果我们要用在生成环境下,由于缺少精确性而无法使用。为什么会造成这种结果那,简单来说就是模型是为了通用性设计的,缺少相关知识,所以导致回复的结果存在胡说八道的情况,根据香农理论,减少信息熵,就需要引入更多信息。从这个角度来说,就有两个途径,一是重新利用相关专业知识再次训练加强模型,或进行模型微调;

2025-02-17 11:19:58 988

原创 全球AI 大模型全栈技术研究报告 2024

经过大规模预训练的大模型,能够在各种任务中达到更高的准确性、降低应用的开发门槛、增强模型泛化能力等,是AI 领域的一项重大进步。大模型最早的关注度源于 NLP 领域,随着多模态能力的演进,CV 领域及多模态通用大模型也逐渐成为市场发展主流。政企的极大关注带动了行业领域大模型的高速发展,逐渐形成了多模态基模型为底座的领域大模型和行业大模型共同发展的局面。伴随基于大模型发展的各类应用的爆发,尤其是生成式 AI,为用户提供突破性的创新机会,打破了创造和艺术是人类专属领域的局面。AI 不再仅仅是“分类”,而且开始进

2025-02-15 14:23:54 876

原创 人人都是程序员时代:程序员如何通过AI大模型续命?

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。,如何基于自身的专业优势和个人能力优势,抓住AI大模型的风口,设计出比较成熟的Agent,既能提升工作效率,还能用它获得兼职收入。,在如今各类产品都在想办法融入AI能力的时代,搞懂大模型的能力边界,可以用AI大模型能力给当前产品赋予更多的能力和价值。这两年,随着 AI 技术的飞速发展,特别是大模型的出现,传统的程序员角色也因此经历着深刻的变革。

2025-02-15 14:14:11 538

原创 什么是大模型?一文读懂大模型的基本概念_看完这篇就足够了

大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。

2025-02-14 17:22:59 1009

原创 【AI大模型必看教程】手把手带你学AI 应用实战——《LangChain 实战课》附PDF讲义

课程精心设计 4 大模块,带你从各个角度吃透 LangChain 精髓。启程篇:从 0 到 1。介绍 LangChain 系统的安装流程,以及如何进行快速的入门操作。同时,详细指导如何使用 LangChain 来构建一个基于“易速鲜花”本地知识库的智能问答系统,让你直接感受 LangChain 强大的功能。

2025-02-13 11:57:24 1400

原创 2025年最火大模型DeepSeek-R1资源汇总

01DeepSeek-R1 是人工智能开源模型生态系统中的一大进步,其最新模型在多种指标上与 OpenAI 的 o1 持平。围绕他们以更少的资金和计算资源实现这一目标,存在许多炒作和铺天盖地的新闻。我没有选择从那些热衷于炒作发布的 AI 影响者的帖子中去了解它,而是决定制作一份阅读清单,链接到许多基础研究论文。这份清单意在让人慢慢地、一篇一篇地阅读,可以加深对这一现象级模型的深刻认知。闲话少说,我们直接开始吧!02本质上,DeepSeek 是基于 Transformer 神经网络架构构建的。

2025-02-13 11:03:19 820

原创 2025年deepseek爆火,普通人如何抓住风口!转行AI大模型,收入暴涨10倍+

本篇文章比较适合以下几类朋友:1.适合想要了解AI到底是怎么回事的小白和入门朋友;2.适合有意愿转型从事AI相关的产品和岗位的朋友,包括产品经理,运营人员;3.适合已经初步了解AI,但是想要进阶学习AI,减少AI认知焦虑的朋友;4.适合有兴趣在AI领域创业搞事情的朋友。

2025-02-12 11:47:22 1033

原创 畅捷通全面接入DeepSeek大模型,助小微企业AI应用加速落地

进入数智商业时代,**,始终走在积极探索AI技术应用前列**,将AI技术引入数智财税、数智商业等各个领域,帮助企业实现智能化、自动化的管理和运营。DeepSeek作为国内新崛起的优秀AI大模型,拥有着强大的通用智能和推理能力,近日,,获得更强模型能力的同时,为小微企业的财务管理、业务运营提供更有力的智能支持和应用体验。值得一提的是,,并根据不同大模型的特点,在产品应用、内容营销、客户服务、研发提效等不同场景实现与国产大模型的融合创新,以满足小微企业不同业务主题和场景下的智能化需求。

2025-02-12 11:41:40 809

原创 运营商实践:AI大模型赋能垂直行业标杆案例集(附PDF下载)

12月11日,GSMA发布了《运营商实践:AI大模型赋能垂直行业标杆案例集》,站在运营商视角,深入分析了大模型在政务、客服、工业、医疗教育、文旅、城市治理等多个领域近20个最具标志性的案例。不仅彰显了大模型技术在多行业的卓越应用成效,还深刻揭示了这些成功案例背后的行业挑战、技术方案、关键创新,以及核心价值。

2025-02-11 22:43:56 256

原创 万字长文搞懂LLM大模型技术原理!

本文从Llama 3报告出发,基本整理一些现代LLM的技术。‘基本’,是说对一些具体细节不会过于详尽,而是希望得到一篇相对全面,包括预训练,后训练,推理,又能介绍清楚一些具体技术,例如RM,DPO,KV Cache,GQA,PagedAttention,Data Parallelism等等的索引向文章。由于东西比较多,且无法详尽细节,所以推荐大家二次整理为自己的笔记。本文的主要参考是Llama Team的The Llama 3 Herd of Models报告原文,以及沐神回归B站新出的论文精读系列。同时也

2025-02-11 22:39:32 717

原创 突然发现Excel手搓Transformer真的好清晰..

🔸 这是一份由科罗拉多大学计算机科学副教授Tom Yeh制作的Google在线文档。它非常独特,让你可以亲手操作计算过程,直观感受神经网络的运行机制。🔸 比如在学习Transformer时,你可以亲手完成注意力机制的计算,一步步理解权重分配的逻辑,以及前馈网络背后的原理。很多小伙伴试过后都惊呼“原来如此简单!”那些原本晦涩难懂的概念,动手实践后瞬间变得清晰明了。这种学习方式特别适合快速掌握AI的基本理念和数学知识。

2025-02-10 14:05:02 1075

原创 深入浅出LangChain与智能Agent:构建下一代AI助手

LangChain为大型语言模型提供了一种全新的搭建和集成方式,通过这个强大的框架,我们可以将复杂的技术任务简化,让创意和创新更加易于实现。本文从LangChain是什么到LangChain的实际案例到智能体的快速发展做了全面的讲解。‍我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。

2025-02-10 14:01:52 674

原创 2025最新最全【大模型学习路线规划】零基础入门到精通_大模型 开发 学习路线、

目标:了解大模型的基本概念和背景。内容:人工智能演进与大模型兴起。大模型定义及通用人工智能定义。GPT模型的发展历程。目标:深入学习大模型的关键技术和工作原理。内容:算法的创新、计算能力的提升。数据的可用性与规模性、软件与工具的进步。生成式模型与大语言模型。Transformer架构解析。预训练、SFT、RLHF。目标:掌握大模型开发所需的编程基础和工具。内容:Python编程基础。Python常用库和工具。提示工程基础。目标:通过实战项目深化理论知识和提升应用能力。

2025-02-04 15:46:29 867

原创 聊聊Agentic RAG,可能是目前最强大和灵活的RAG实现方式

经典RAG应用的范式与架构已经非常流行,我们可以在很短的时间内借助成熟框架开发一个简单能用的RAG应用。在【RAG实战篇系列】文章中,风叔也介绍了一个最最基本的Naive RAG系统,以及优化RAG系统的十八般武器。但是,实际应用场景要远比理论中复杂。以企业级应用场景为例,企业内部有大量不同来源与类型的文档,比如word、pdf等非结构化数据,以及mysql数据库这种结构化数据。假设,我们现在需要在这些文档之上构建一个知识密集型的应用或工具,包括:

2025-02-03 09:15:00 1019

原创 35页综述:Agentic RAG七大架构首次曝光!

嘿,大家好!这里是一个专注于AI智能体的频道~今天给家人们分享一篇35页的最新Agentic RAG综述!图特别多,应该有很多小伙伴喜欢。1. 为什么需要Agentic RAG?传统的LLMs虽然强大,但受限于静态训练数据,往往无法适应动态、实时的查询需求。虽然 RAG 通过引入实时数据检索提供了一定改善,但其静态工作流程仍然存在明显短板:

2025-02-02 08:15:00 563

原创 前端程序员转行大模型,我可不想被裁了_前端ai大模型

前端程序员转行到大模型领域,需要学习一系列新的技能和理论知识。以下是一个学习路径的概览

2025-02-01 11:15:00 1693

原创 【NLP修炼系列之Bert】Bert多分类&多标签文本分类实战(附源码)

本文是Bert文本多分类和多标签文本分类实战,其中多分类项目是借鉴github中被引用次数比较多的优秀项目,多标签文本分类是我在公司业务中实际用到的线上项目,今天把两个项目都介绍给大家,其实Bert做文本分类项目都大差不差,两个项目的项目结构也都差不多,这样更容易被初学者迅速入手和理解。文本多分类任务用到的数据集是THUCNews数据集中抽取20w新闻标题,文本长度在20-30之间,一共10个类别,每个类别2万条。类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。

2025-01-31 07:00:00 1005

原创 大模型书籍李开复周鸿祎力荐《实战AI大模型》!NUS尤洋教授首发新书深入浅出热门AI大模型,新手到专家的必备指南

大模型的复杂性和技术的不断更新,如何迅速理解不端更新迭代的大模型,准确地掌握这些技术,也成为不小的挑战。这些模型的学习和应用对于任何希望进入AI领域的人来说都是必不可少的,它们不仅为AI理论和实践提供了坚实的基础,而且还直接影响了AI技术的未来发展方向。从基础理论到最前沿的实践应用,全面覆盖了AI大模型领域,包括Transformer模型、BERT、ALBERT、T5、GPT系列、InstructGPT、RLHF、ChatGPT、GPT-4、Google的PaLM以及视觉模型等关键技术。

2025-01-30 09:45:00 1958

原创 从零开始使用 Hugging Face 的开源模型_hugging face模型

看到这篇文章的各位想必对 Hugging Face 都有所耳闻了。作为 AI 时代的开源重要阵地,我们可以在这里找到特别多的一手开源模型,直接部署到本机进行调试。但是究竟怎么开始,尤其是对于非常多没有接触过 AI 模型的同学来说,从直接使用现成的 ChatGPT 到部署一个本地 AI 模型将是一个非常大的跨度,很多人直接就望而却步了,也很多人卡在实现第一个本地部署模型上,这里面的原因包括但不限于代码部署、下载模型失败等等。

2025-01-29 11:45:00 931

原创 如何搭建基于大模型的智能知识库_大模型知识库构建

基于RAG与LLM的知识库作为目前最有潜力的企业端大模型应用之一,从技术角度可以看到,建设方案已经完备;从业务角度,最终的应用效果和业务价值还需要观察,并通过业务侧的反馈不断地促进建设方案的进一步优化,比如增加对多模态知识的处理能力等。让我们共同期待这类应用普及那一天的到来。

2025-01-28 06:30:00 725

原创 太绝了,这本Ai大门的敲门砖!!码住

这本书旨在帮助读者深入理解生成式AI的工作原理,并掌握实际应用这些技术的技能。生成式AI就算玩出花,目前就是生成文本、生成图像、生成声音,这本书竟然一次性把这些模型讲完了,包括tranformer和diffusion, 文中有图有文有代码,我亲测代码可跑性很高!!!而且篇幅短,由总到分的讲解模型的每一个部分,结构性可读性很强果想快速学习生成式AI的模型,这本书一定要成为你的第一本书。

2025-01-27 08:30:00 347

原创 AI机器人本地免费部署(部署Llama 3.1详细教程)

昨日,Meta公司发布了人工智能模型——Llama 3.1。那么Llama 3.1 405B的效果怎么样?我们来对比一张图,横向对比一下GPT-4。可以看出,Llama 3.1 405B在各类任务中的表现可以与GPT-4等顶级的模型相差无几。那么,我们怎样才能用到这款强大的Llama 3.1 405B模型呢?最直接的方式是通过Meta.ai平台,但目前这一途径仅对美丽国的用户开放。那有无适合平民用的大模型嘞。接下来我们将在本地部署Llama 3.1 8B(环境所迫)1.环境准备。

2025-01-26 07:30:00 948

原创 大模型技术实践 | RAG 精确应对大模型敏感问题知识幻觉难题

在大模型的实际应用落地过程中,会遇到所谓的幻觉(Hallucination)问题。对于语言模型而言,当生成的文本语法正确流畅,但与原文不符(Faithfulness)或事实不符(Factualness)时,模型便出现了幻觉的问题。在传统自然语言处理中,幻觉一般指模型输出与原文信息存在冲突,或添加不在原文的额外信息。在大模型中,不局限于特定任务,幻觉往往指的是与世界知识不一致,即不符合事实。尤其是在对输出内容真实性的容忍度较低时,大模型的幻觉现象会严重影响其落地效果。因此,纠正这些幻觉现象,是一个值得长期关注

2025-01-25 21:59:18 989

原创 2025爆火全网LLM大模型书籍:从零构建大型语言模型,重磅开源教程!!标星20.3K

自 ChatGPT 发布以来,大型语言模型(LLM)已经成为推动人工智能发展的关键技术。近期,机器学习和 AI 研究员、畅销书《Python 机器学习》作者 Sebastian Raschka 又写了一本新书 ——《Build a Large Language Model (From Scratch)》,旨在讲解从头开始构建大型语言模型的整个过程,包括如何创建、训练和调整大型语言模型。对GPT大模型感兴趣的有福了!这本书的名字叫也就是。

2025-01-25 21:55:55 863

原创 人人都能读懂的大模型入门指南 - Transformer与Attention机制

本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。

2025-01-23 10:58:49 800

原创 记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法

实验结果表明,记忆层技术在提升大语言模型性能方面具有显著优势。随着大语言模型逐渐接近计算资源和物理极限,这项技术的应用价值将愈发凸显。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

2025-01-23 10:52:48 502

原创 【2025大模型算法面试必看】2024大模型算法面试题总结,看这篇就够了!!

花了60天整理的大模型面试八股文,178页,从基础面,到进阶、LangChain、Agent、微调,以及大模型LLM面试常考题,完整总结,现在无偿分享给大家!!

2025-01-22 11:30:22 1281

原创 知识图谱 + 大模型知识整合:将知识图谱文本证据映射到大模型向量空间,解决N个同义词,增强深层语义理解和关联推理_github 医学知识图谱

知识图谱 + 大模型知识整合:将知识图谱文本证据映射到大模型向量空间,解决N个同义词,增强深层语义理解和关联推理

2025-01-22 11:22:49 1007

原创 AI赋能电商:从个性化推荐到智能化运营

个性化推荐系统是AI技术在电商中最常见的应用之一。通过分析用户的浏览历史、购买记录、搜索行为等数据,AI算法能够精准地预测用户的兴趣和需求,从而向用户推荐最符合其偏好的商品。这种个性化的推荐不仅能够提高用户的购买转化率,还能增强用户的黏性和满意度。案例分析:亚马逊的个性化推荐亚马逊是最早应用个性化推荐系统的电商平台之一。其推荐系统基于协同过滤、深度学习等多种算法,能够实时分析用户的购物行为,生成个性化的推荐列表。据统计,亚马逊的个性化推荐系统贡献了其销售额的35%以上。

2025-01-21 13:43:23 1109

原创 大模型书籍推荐:《AI赋能:企业智能化应用实践》企业级 AI智能化赋能应用,附PDF

本书是一本介绍AI技术在企业生产和运营过程中实践应用的图书,全书共6章:智能化应用的概念,智能化应用的价值、挑战及发展趋势,智能化技术概述,多行业智能化应用业务场景分析,智能化应用的项目化实施和智能化应用的实践案例。本书旨在为企业提供实用的AI应用指南,深入介绍了智能化应用的开发和实施过程,包括技术架构、数据管理、算法选择、模型训练和评估等内容,并结合实际案例分享经验和方法论,帮助读者在实践中掌握建立智能化应用的关键技术和管理能力。

2025-01-21 12:00:51 865

原创 GraphRAG + GPT-4o mini 低成本构建 AI 图谱知识库

GraphRAG+GPT-4omini低成本构建AI图谱知识库。更好的效果,更低的价格,听起来是不是像梦呓?

2025-01-20 11:47:48 782

原创 GraphRAG工程落地成本详细解读和实例分析

GraphRAG提供了一种变革性的方法来支持RAG应用,使组织能够从他们的数据中释放新的价值。虽然构建图形的成本高于传统的嵌入方法,但所带来的价值远远超过这些开支。随着技术的发展和新模型的出现,GraphRAG的成本预计将下降,使其成为希望最大化数据价值的组织更加可行的解决方案。GraphRAG解决方案加速器使您可以轻松入门,基准自己的数据集成本,并开始在自己的应用中实施这一新兴技术读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。

2025-01-20 11:44:08 801

原创 28岁程序员转行AI产品经理?我做了哪些准备,收藏这一篇就够了!_软件开发转产品经理

最近收到很多网友发给我的私信,说自己在AI领域做了5-6年开发,现在想转型做AI项目经理,但不知道从何下手,有没有什么好的建议?今天,我就来聊一聊这个问题。

2025-01-15 10:59:16 1317

原创 面试被问RAG开发痛点,万能答法!

本文探讨了开发 RAG 流水线过程中的 12 个痛点( 论文中的 7 个痛点和另外 5 个痛点 ),并针对所有痛点提出了相应的解决方案。请参阅下图,该图改编自论文《 设计检索增强生成系统时的七个故障点 》中的原图:将所有 12 个 RAG 痛点及其建议的解决方案并列在一张表格中,我们就得出了以下结果:虽然这份清单并非详尽无遗,但它旨在阐明 RAG 系统设计和实施所面临的多方面挑战。

2025-01-15 10:57:33 963

原创 LLM PEFT微调方法最全理论篇

在调研过程中,感觉现在用的多的都是LoRA派系的微调方法,比如LLaMA-Factory就拿它LoRA去对比ChatGLM的P-Tuning,结果显示3.7倍的加速比,更高的Rouge分数,使用QLoRA还进一步减低GPU显存消耗。图:LLaMA-Factory的性能对比。

2025-01-13 22:47:43 708

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除