被数论くん搞得头大的本宝宝来写一发数论题~
51NOD 序列求和 V5
若 R≡0 ,那么显然答案就为0.
接下来,我们用符号 f k (n) 代表我们所要求的值。首先我们要预处理 f k (1),⋯,f k (k+1) 的值,由于 x k 是一个完全积性函数,利用线性筛,这一预处理可以很容易在 O(k) 的时间内完成。
若 R≡1 ,则原问题转化为求 ∑ n i=1 i k 的值,我们知道,这时 f k (n) 是关于 n 的
这里先写一个引理: ∑ k i=0 (−1) i C i n =(−1) k C k n−1 ,这个很好证我就不写了。
将 a n 代回原式得:
f k (n) =∑ i=0 k+1 C i n ∑ j=0 i (−1) i−j C j i f k