51NOD 序列求和 V5题解

本文详细解析了51NOD序列求和V5题目,涉及到数论概念和完全积性函数的线性筛预处理。当R=0时,答案为0;R=1时,通过二项式反演求解;R≠1时,利用特定的多项式关系式进行计算。文章还证明了一个关于求和的引理,有助于解题。
摘要由CSDN通过智能技术生成

  被数论くん搞得头大的本宝宝来写一发数论题~
  51NOD 序列求和 V5
  若 R0  ,那么显然答案就为0.
  接下来,我们用符号 f k (n)  代表我们所要求的值。首先我们要预处理 f k (1),,f k (k+1)  的值,由于 x k   是一个完全积性函数,利用线性筛,这一预处理可以很容易在 O(k)  的时间内完成。
  若 R1  ,则原问题转化为求  n i=1 i k   的值,我们知道,这时 f k (n)  是关于 n  k+1  次多项式。同时,我们也知道, nk+1  时,每一个 C i n   都是关于 n  i  次多项式,并且它们线性无关,而 nk  时,可以 O(1)  直接查询。对于 nk+1  的情况,我们用 C 0 n ,,C k+1 n   k+2  个数来线性表出 f k (n)  ,设 f k (n)= k+1 i=0 C i n a i   ,根据二项式反演,有 a n = n i=0 (1) ni C i n f k (i) 
  这里先写一个引理:  k i=0 (1) i C i n =(1) k C k n1   ,这个很好证我就不写了。
  将 a n   代回原式得:

f k (n) = i=0 k+1 C i n  j=0 i (1) ij C j i f k 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值