emmm没错又是链剖。。
转化成区间之后题目的奇怪询问看出这题是非线段树不可了,记录左右端点的颜色,然后对树链进行合并。。合并时有一个麻烦的问题就是这里的区间是有方向的,所以在合并时要写多几步来处理这个方向问题。。于是代码又长了一大截。。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define inf 1000000007
#define eps 1e-8
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define ls T[i<<1]
#define rs T[i<<1|1]
#define op T[i]
#define NM 100005
#define nm 200005
#define pi 3.141592653
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}
int top[NM],f[NM],size[NM],TOP,tot,id[NM],son[NM],d[NM];
int n,m,_x,_y,_t,a[NM],b[NM];
char _s[10];
struct edge{int t;edge*next;}e[nm],*h[NM],*o=e;
void add(int x,int y){o->t=y;o->next=h[x];h[x]=o++;}
void dfs1(int x){
link(x)if(!f[j->t]){
f[j->t]=x;d[j->t]=d[x]+1;
dfs1(j->t);
if(size[j->t]>size[son[x]])son[x]=j->t;
size[x]+=size[j->t];
}
size[x]++;
}
void dfs2(int x){
top[x]=TOP;id[x]=++tot;
if(son[x])dfs2(son[x]);
link(x)if(!top[j->t])dfs2(TOP=j->t);
}
struct info{
int s,size,tag,l,r;
info operator+(const info&o){
if(l==-1)return o;
if(o.r==-1)return *this;
info f;
f.tag=-1;f.l=l;f.r=o.r;
f.size=size+o.size;
f.s=s+o.s;f.s-=o.l==r;
return f;
}
}T[4*NM],null={0,0,-1,-1,-1};
void build(int i,int x,int y){
int t=x+y>>1;
if(x==y){op.s=1;op.l=op.r=b[x];op.size=1;op.tag=-1;return;}
build(i<<1,x,t);build(i<<1|1,t+1,y);
op=ls+rs;
}
void pushdown(int i){
if(op.size>1&&op.tag>=0){
ls.tag=rs.tag=op.tag;
ls.s=rs.s=1;ls.l=ls.r=rs.l=rs.r=op.tag;
op.tag=-1;
}
}
void mod(int i,int x,int y){
int t=x+y>>1;
if(_y<x||y<_x)return;
if(_x<=x&&y<=_y){op.s=1;op.l=op.r=op.tag=_t;return;}
pushdown(i);
mod(i<<1,x,t);mod(i<<1|1,t+1,y);
op=ls+rs;
}
info query(int i,int x,int y){
int t=x+y>>1;
if(_y<x||y<_x)return null;
if(_x<=x&&y<=_y)return op;
pushdown(i);
return query(i<<1,x,t)+query(i<<1|1,t+1,y);
}
void ch(int x,int y){
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]])swap(x,y);
_x=id[top[x]];_y=id[x];mod(1,1,n);
}
if(d[x]>d[y])swap(x,y);
_x=id[x];_y=id[y];mod(1,1,n);
}
int _query(int x,int y){
info tx=null,ty=null;
while(top[x]!=top[y])
if(d[top[x]]>d[top[y]]){
_x=id[top[x]];_y=id[x];tx=query(1,1,n)+tx;
x=f[top[x]];
}else{
_x=id[top[y]];_y=id[y];ty=query(1,1,n)+ty;
y=f[top[y]];
}
if(d[x]>d[y]){
_x=id[y];_y=id[x];tx=query(1,1,n)+tx;
}else{
_x=id[x];_y=id[y];ty=query(1,1,n)+ty;
}
swap(tx.l,tx.r);
tx=tx+ty;
return tx.s;
}
int main(){
freopen("data.in","r",stdin);
n=read();m=read();
inc(i,1,n)a[i]=read();
inc(i,1,n-1){_x=read();_y=read();add(_x,_y);add(_y,_x);}
dfs1(f[1]=1);dfs2(TOP=1);
inc(i,1,n)b[id[i]]=a[i];
build(1,1,n);
while(m--){
scanf("%s",_s);_x=read();_y=read();
if(_s[0]=='Q')printf("%d\n",_query(_x,_y));
else{_t=read();ch(_x,_y);}
}
return 0;
}
2243: [SDOI2011]染色
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9118 Solved: 3424
[ Submit][ Status][ Discuss]
Description
给定一棵有n个节点的无根树和m个操作,操作有2类:
1、将节点a到节点b路径上所有点都染成颜色c;
2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),
如“112221”由3段组成:“11”、“222”和“1”。
请你写一个程序依次完成这m个操作。
Input
第一行包含2个整数n和m,分别表示节点数和操作数;
第二行包含n个正整数表示n个节点的初始颜色
下面 行每行包含两个整数x和y,表示x和y之间有一条无向边。
下面 行每行描述一个操作:
“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;
“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。
Output
对于每个询问操作,输出一行答案。
Sample Input
6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
Sample Output
3
1
2
1
2
HINT
数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。