开始填数位DP大坑。。(鉴于数位DP对数学的要求并不高。。
看了一下原来数位DP是要用记忆化搜索写比较方便。。。原因是容易传递是否到达上界和下界。。不过下界一般不用判断,毕竟我们还可以差分嘛。。。
这题的方程十分明显了d[i][j]=sum(d[i-1][k])当且仅当j!=4&&!(j==6&&k==2)
然后数位DP的主要难点还是在转移这块吧。。多练练应该就会了。。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define eps 1e-8
#define inf 1000000007
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define ls T[i<<1]
#define rs T[i<<1|1]
#define op T[i]
#define mid (x+y>>1)
#define NM 305
#define nm 1000005
#define pi 3.141592653
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}
int d[10][10],_x,n,b[10];
int dfs(int n,bool f,int t){
if(!n)return 1;
if(!f&&d[n][t])return d[n][t];
int ans=0,m=f?b[n]:9;
inc(i,0,m)if(i!=4&&!(t==6&&i==2)){
ans+=dfs(n-1,f&&i==m,i);
//printf("%d %d:%d\n",n,i,ans);
}
return d[n][t]=ans;
}
int solve(int x){
mem(b);mem(d);
for(n=0;x;x/=10)b[++n]=x%10;
return dfs(n,true,0);
}
int main(){
while(_x=read())printf("%d\n",solve(read())-solve(_x-1));
return 0;
}
不要62
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 50110 Accepted Submission(s): 18974
Problem Description
杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer)。
杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有4或62的号码。例如:
62315 73418 88914
都属于不吉利号码。但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际上给多少辆新的士车上牌照了。
杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有4或62的号码。例如:
62315 73418 88914
都属于不吉利号码。但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际上给多少辆新的士车上牌照了。
Input
输入的都是整数对n、m(0<n≤m<1000000),如果遇到都是0的整数对,则输入结束。
Output
对于每个整数对,输出一个不含有不吉利数字的统计个数,该数值占一行位置。
Sample Input
1 100 0 0
Sample Output
80
Author
qianneng
Source
Recommend
Statistic | Submit | Discuss | Note