bzoj3242(基环树DP)

先考虑树的情况。。显然是直径的一半(然而窝并没有看出来qaq

然后环上的情况。。。首先处理一下外向树的情况。。跑一遍dfs可以解决。。顺便处理最大深度。。。

然后是最远路径经过环的情况。。逐点对求实在是非常麻烦,考虑的情况很多。。

这需要特殊的姿势(就是题解)。。

考虑已经确定了答案点,那么这个点延伸出去能得到一棵最短路路径树。。显然这棵最短路径树必将不会经过环上的一条边,因此,可以枚举环上的边,依次删除求直径。。这样O(n^2)显然不行。。

我们将外向树缩成点后可以当成序列环DP来做。。(然后这里就暴露出了窝做题太少。。

考虑环上断了之后,直径有2种情况。。一种是不跨过序列,即在序列断边后的两侧,一种是跨过序列,即在左右都有半段。。

所以要对前后缀算出完整的直径和一半的直径,枚举断边分别取最大值即可。。

要注意到断边之后可能会出现新叶子节点 。。所以直接把环上节点也当叶子节点看待就可以合并这个特殊情况。。

 

 

/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1LL<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 100005
#define nm 400000
#define N 1000005
#define M(x,y) x=max(x,y)
const double pi=acos(-1);
const ll inf=1e18;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
 
 
 
struct edge{int t;ll v;edge*next;}e[nm],*h[NM],*o=e;
void add(int x,int y,ll v){o->t=y;o->v=v;o->next=h[x];h[x]=o++;}
int n,c[NM],f[NM],tot,cnt,low[NM];
ll d[NM],a[NM],ans,_t,_x,_y,g[NM],s,pre[NM],nxt[NM],b[NM];
bool v[NM];
 
void tar(int x){
    low[x]=++cnt;
    link(x)if(f[x]!=j->t)if(!low[j->t])f[j->t]=x,tar(j->t);
    else if(low[j->t]>low[x])for(int y=j->t;y!=f[x];y=f[y])c[++tot]=y,v[y]++;
}
 
void dfs(int x){
    link(x)if(f[x]!=j->t){
	f[j->t]=x;dfs(j->t);
        if(d[x])s=max(s,d[j->t]+j->v+d[x]);
	d[x]=max(d[x],d[j->t]+j->v);
    }
}
 
int main(){
    n=read();
    inc(i,1,n){_x=read();_y=read();_t=read();add(_x,_y,_t);add(_y,_x,_t);}
    tar(1);c[tot+1]=c[1];inc(i,1,tot)link(c[i])if(j->t==c[i+1])a[i+1]=j->v+a[i];
    inc(i,1,tot)link(c[i])if(!v[j->t]){f[j->t]=c[i];dfs(j->t);if(d[c[i]])s=max(s,d[j->t]+j->v+d[c[i]]);d[c[i]]=max(d[c[i]],d[j->t]+j->v);}
    _x=0;inc(i,1,tot)pre[i]=max(pre[i-1],d[c[i]]+a[i]+_x),_x=max(_x,d[c[i]]-a[i]),b[i]=max(b[i-1],d[c[i]]+a[i]);
    _x=0;dec(i,tot,1)nxt[i]=max(nxt[i+1],d[c[i]]-a[i]+_x),_x=max(_x,d[c[i]]+a[i]),g[i]=max(g[i+1],d[c[i]]+a[tot+1]-a[i]);
    ans=pre[tot];
    inc(i,1,tot-1)ans=min(ans,max(pre[i],max(nxt[i+1],b[i]+g[i+1])));
    ans=max(ans,s);
    return 0*printf("%.1lf\n",ans/2.0);
}

 

3242: [Noi2013]快餐店

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 976  Solved: 545
[Submit][Status][Discuss]

Description

小T打算在城市C开设一家外送快餐店。送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方。 快餐店的顾客分布在城市C的N 个建筑中,这N 个建筑通过恰好N 条双向道路连接起来,不存在任何两条道路连接了相同的两个建筑。任意两个建筑之间至少存在一条由双向道路连接而成的路径。小T的快餐店可以开设在任一建筑中,也可以开设在任意一条道路的某个位置上(该位置与道路两端的建筑的距离不一定是整数)。 现给定城市C的地图(道路分布及其长度),请找出最佳的快餐店选址,输出其与最远的顾客之间的距离。 


 

Input

第一行包含一个整数N,表示城市C中的建筑和道路数目。
接下来N行,每行3个整数,Ai,Bi,Li(1≤i≤N;Li>0),表示一条道路连接了建筑Ai与Bi,其长度为Li 。
 

Output

仅包含一个实数,四舍五入保留恰好一位小数,表示最佳快餐店选址距离最远用户的距离。
注意:你的结果必须恰好有一位小数,小数位数不正确不得分。

Sample Input

1 2 1
1 4 2
1 3 2
2 4 1

Sample Output

2.0

HINT

 

 

数据范围

对于 10%的数据,N<=80,Li=1;

对于 30%的数据,N<=600,Li<=100;

对于 60% 的数据,N<=2000,Li<=10^9;

对于 100% 的数据,N<=10^5,Li<=10^9

 

Source

 

[Submit][Status][Discuss]



题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值