bzoj2791(基环树+倍增lca)

仔细分析其实只有3种情况。。

一种是不在一个联通块上。。直接-1

一种是在同一个外向树上。。在树里面做lca即可。。

一种是要跨过环。。其实跨环的方式只有2个,维护一下深度,差分一下环的距离,就可以把2个求出来了。。然后按照要求去比较即可。。。

最tm蛋疼的就是这题竟然卡树剖??让汪聚聚写了一下倍增快得飞起。。orz汪聚聚

 

 

/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1LL<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 500005
#define nm 1000000
#define N 1000005
#define M(x,y) x=max(x,y)
const double pi=acos(-1);
const ll inf=1e18;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
 
 



struct edge{int t;edge*next;}e[nm],*h[NM],*o=e;
void add(int x,int y){o->t=y;o->next=h[x];h[x]=o++;}
int n,m,_x,_y,_f[NM],g[NM];
int F[NM][21],f[NM],d[NM],size[NM],son[NM],top[NM],TOP;
int low[NM],cnt,c[NM],tot,v[NM],b[NM];
int find(int x){return _f[x]==x?x:_f[x]=find(_f[x]);}


void tar(int x){
    low[x]=_x;
    link(x)if(low[j->t]==_x)
	for(int y=x;y!=f[j->t];y=f[y])c[++tot]=y,v[y]=tot;
    else if(!low[j->t])f[j->t]=x,tar(j->t);
}

void dfs1(int x){link(x)if(!v[j->t])F[j->t][0]=x,d[j->t]=d[x]+1,dfs1(j->t);g[x]=_x;}
void dfs3(int x){
    for(int i=1;i<=20;i++)F[x][i]=F[F[x][i-1]][i-1];
    link(x)if(!v[j->t])dfs3(j->t);
}
int Lca(int u,int v){
    if(d[u]<d[v])swap(u,v);
    int tmp=d[u]-d[v];
    for(int i=0;i<=20;i++)if(tmp&(1<<i))u=F[u][i];
    if(u==v)return u;
    for(int i=20;i>=0;i--){
	if(F[u][i]!=F[v][i]){
	    u=F[u][i];v=F[v][i];
	}
    }
    return F[u][0];
}

int main(){
    freopen("data.in","r",stdin);
    n=read();m=read();
    inc(i,1,n)_f[i]=i;
    inc(i,1,n){
	_x=read();add(_x,i);
	int x=find(i),y=find(_x);
	if(x==y)continue;
	_f[x]=y;
    }
    inc(i,1,n)if(!low[i]){int t=tot;tar(_x=i);inc(j,t+1,tot)b[j]=tot-t;}
    inc(i,1,tot)dfs1(_x=F[c[i]][0]=c[i]),dfs3(c[i]);
    while(m--){
	_x=read();_y=read();
	int x=find(_x),y=find(_y);
	if(x!=y){printf("-1 -1\n");continue;}
	x=g[_x];y=g[_y];
	if(x==y){
	    int t=Lca(_x,_y);
	    printf("%d %d\n",d[_x]-d[t],d[_y]-d[t]);
	    continue;
	}
	int  _f=0;
	x=v[x];y=v[y];
	if(x>y)swap(x,y),swap(_x,_y),_f^=1;
	int s1=y-x+d[_x],s2=d[_y];
	int t1=d[_x],t2=b[y]-(y-x)+d[_y];
	if(max(s1,s2)>max(t1,t2))s1=t1,s2=t2;
	else if(max(s1,s2)==max(t1,t2))if(min(s1,s2)>min(t1,t2))s1=t1,s2=t2;
	else if(min(s1,s2)==min(t1,t2))if((s1<s2)^_f)s1=t1,s2=t2;
	if(_f)swap(s1,s2);
	printf("%d %d\n",s1,s2);
    }
    return 0;
}

 

 

2791: [Poi2012]Rendezvous

Time Limit: 25 Sec  Memory Limit: 128 MB
Submit: 213  Solved: 141
[Submit][Status][Discuss]

Description


给定一个n个顶点的有向图,每个顶点有且仅有一条出边。
对于顶点i,记它的出边为(i, a[i])。
再给出q组询问,每组询问由两个顶点a、b组成,要求输出满足下面条件的x、y:
1. 从顶点a沿着出边走x步和从顶点b沿着出边走y步后到达的顶点相同。
2. 在满足条件1的情况下max(x,y)最小。
3. 在满足条件1和2的情况下min(x,y)最小。
4. 在满足条件1、2和3的情况下x>=y。
如果不存在满足条件1的x、y,输出-1 -1。

 

Input

第一行两个正整数n和q (n,q<=500,000)。
第二行n个正整数a[1],a[2],...,a[n] (a[i]<=n)。
下面q行,每行两个正整数a,b (a,b<=n),表示一组询问。

 

Output

输出q行,每行两个整数。

 

Sample Input

12 5
4 3 5 5 1 1 12 12 9 9 7 1
7 2
8 11
1 2
9 10
10 5
 

Sample Output

2 3
1 2
2 2
0 1
-1 -1
 

HINT

 

Source

鸣谢Oimaster

[Submit][Status][Discuss]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值