数论小笔记

由于窝队数学能力非常捉急。。所以需要窝这个半吊子假数学选手来充一下数。。主要负责数论这块的内容。。

然后窝也比较健忘。。所以就贴一些定理和证明。。

 

定义一:(a,b)代表最大公约数,[a,b]代表最小公倍数

同余性质的补充,注意一下性质7性质9即可

性质1:a≡a(mod m),(反身性) 
这个性质很显然.因为a-a=0=m·0。 
性质2:若a≡b(mod m),那么b≡a(mod m),(对称性)。
性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。
性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。
性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。
证明 :m|(a-b) , m|(c-d) 设 a-b=km c-d=lm (ac-bd)=klm^2+(b+d)m =>m|(ac-bd)  
性质6:若a≡b(mod m),那么an≡bn(mod m),(其中n为自然数)。
证明 : m|(a-b) => m|n*(a-b) 
性质7:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。
证明 : m|c(a-b) d=(m,c)=>m/d|(a-b) => a≡b(mod m/d)=>当 d=1时 即(c,m)=1上面结论成立
性质8:若a≡b(mod m),那么a的n次方和b的n次方也对于m同余   
证明 :a^n-b^k=(a-b)(a^(n-1)+a^(n-2)b.....b^(n-1)) +m|(a-b) ==>m|(a^n-b^n)
性质9:若 a≡b(mod m1) a≡b(mod m2).... a≡b(mod mi) 则 a≡b(mod [m1,m2,..mi])
证明:m1 |(a-b) m2|(a-b) ..mi|(a-b)  =>[m1,m2...mi]|(a-b) (因为 a-b里面含了 m集合的所有因子和每个因子的最大个数)
推论 m1,m2..mi两两互质 则 a≡b(mod m1m2..mi);

同余方程中,指数的幂次不能直接取模,需要用到欧拉降幂(具体可以百度)

 

定义二:定义在所有正整数上的函数称为算数函数

定义三:算数函数f如果满足对任意两个互素的正整数n和m,均有f(nm)=f(m)f(n),就称为积性函数(乘性函数)。如果对任意两个正整数n和m,均有f(nm)=f(n)f(m),就成为完全积性(乘性)函数。

小推论:对任意积性函数f(n),满足f(1)=1

常见积性函数:

恒等函数\large I(n)=1

单位函数\large id(n)=n

幂函数\large id^k(n)=n^k

元函数\large e(n)=[n=1]      狄利克雷卷积的乘法单位元

除数函数\large \sigma _k(n)=\sum_{d|n}d^k表示n的约束的k次幂和

约束个数函数\large \tau (n)/d(n)=\sigma_0(n)=\sum_{d|n}1表示约数个数

约数和函数\large \sigma(n)=\sigma_1(n)=\sum_{d|n}d表示n的约数之和

欧拉函数\varphi(n)

莫比乌斯函数\mu (n)

定理一:如果f是一个积性函数,对任意正整数n有素数幂分解 n=p_1^{a_1}p_2^{a_2}...p_k^{a_k},那么有f(n)=f(p_1^{a_1})f(p_2^{a_2})...f(p_k^{a_k})

证明:乘积因子之间互质,可以根据积性函数性质分解

Ex定理一:如果f是积性函数,则f的和函数F(n)=\sum_{d|n}f(d)也是积性函数

证明:用狄利克雷卷积易得

EX定理二:两个积性函数相乘仍为积性函数

证明:令h(n)=f(n)g(n)    h(nm)=f(nm)g(nm)=f(n)f(m)g(n)g(m)=h(n)h(m)

 

定义四:欧拉函数φ(n)指不超过n且于n互素的正整数的个数,其中,n是一个正整数。

定理二:如果p是素数,那么φ(p)=p-1;反之,如果φ(p)=p-1,那么p是素数

证明:此命题与1..p-1均与素数p互质等价

定理三:设p为素数,a为一个正整数,那么\varphi (p^{a})=p^{a}-p^{a-1}=(p-1)*p^{a-1}

证明:只有p的倍数不与p^a互质,故在p^a基础上减去(p^a)/p=p^(a-1)

定理四:欧拉函数为积性函数,即\varphi (nm)=\varphi(n)\varphi(m)

证明:

证明方法很多,下面给出最易懂的证明(因为其他证明窝看不懂orz

设n与m互质,构造如下矩阵,包含nm个数

由定义要从矩阵中选出于nm互素的数,其行号i须满足(i,n)==1,共有φ(n)个满足条件的i

其列号须满足(j,m)==1,共φ(m)个满足条件的j

综上共有φ(n)φ(m)个数与nm互质,即\varphi (nm)=\varphi(n)\varphi(m)

定理五:n=p_1^{a_1}p_2^{a_2}...p_s^{a_s}为正整数n的素数幂分解,那么\varphi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k})

证明:结合定理一、定理二、定理四对φ(n)进行素数幂分解,得

\LARGE \varphi(n)\\ =\varphi(p_1^{a_1})\varphi(p_2^{a_2})...\varphi(p_k^{a_k})\\ \mathbf{​{\color{Red} =(p_1-1)p_1^{a_1-1}(p_2-1)p_2^{a_2-1}...(p_k-1)p_k^{a_k-1}}}\\ =(1-\frac{1}{p_1})p_1^{a_1}(1-\frac{1}{p_2})p_2^{a_2}...(1-\frac{1}{p_k})p_k^{a_k}\\ =n*(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k})

这个分解和证明比较经典吧。。划重点划重点。。。

推论:当n为奇数时,有φ(2n)=φ(n)

定理六:设n是一个大于2的正整数,那么φ(n)是偶数

证明:对任意与n互质的数m,有(n,m)=(n,n-m)=1

当n>2时,n与n/2必不互质,那么有m!=n-m,即所有与n互质的数成对出现,故φ(n)为偶数

定理七:\sum_{d|n}^{ }\varphi(d)=n

证明一:构造序列\frac{1}{n},\frac{2}{n},\frac{3}{n}...\frac{n}{n},并进行约分

若分数\frac{a}{b}在上面出现,则满足b|n和(a,b)==1

对同一个b,满足条件的a有φ(b)个,于是上面n个分数根据分母b被分为\sum_{b|n}^{ }\varphi(b)个,得证

(证明二待补充,还有用反演证的等反演学了再补。。)

定义五:定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合。 显然 |Zn| =φ(n) 。

定理八:

欧拉定理:对于互质的正整数a和n,a^{\varphi(n)}\equiv 1\, \, mod\, \, n

证明:令完全余数集合Z_n=\left \{x_1,x_2,x_3...x_{\varphi(n)}\right\},S=\left\{ax_1\, \, mod \, \,n,ax_2\, \, mod \, \,n,....,ax_{\varphi(n)}\, \, mod \, \,n\right\}

先证Zn=S

因为 a 与 n 互质, xi (1 ≤ i ≤ φ(n)) 与 n 互质, 所以 a * xi  与 n 互质,所以 a * xi  mod n ∈ Zn 。

若 i ≠ j , 那么 xi ≠ xj,有0 < xi - xj < n,又a与n互质,得a * ( xi - xj ) mod n ≠ 0  ,所以a * xi mod n ≠ a * xj mod n (消去律)

进而得

\large a^{\varphi(n)}*x_1*x_2*...*x_{\varphi(n)} \, \, mod\,\,n\\ \equiv (ax_1)*(ax_2)*...*(ax_{\varphi(n)})\,\,mod\,\,n\\ \equiv(ax_1\,\,mod\,\,n)*(ax_2\,\,mod\,\,n)*...*(ax_{\varphi(n)}\,\,mod\,\,n)\\ \equiv x_1*x_2*...*x_n\,\,mod\,\,n

约去x1*x2*...*xn得a^{\varphi(n)}\equiv 1\, \, mod\, \, n

推论:费马小定理:若p为质数,对于互质的正整数a和p,\small a^{p-1}\equiv 1\, \, (mod\, \, p)

除了用欧拉定理推导费马小定理,还有一种直接证明的方法:(课上学的)

对一个余数r,1<=r<=p-1,对r逐次乘上任意一个数a满足(a,p)=1,有a^sr\nmid p,由容斥原理,当s>n,必有a^sr与之前的数重复

考虑最早出现重复的情况,若a^sr\equiv a^kr\,\,(mod\,\,p),有a^{s-k}r\equiv r\,\,(mod\,\,p),因此最早出现重复的情况只能是a^{s}r\equiv r\,\,(mod\,\,p)

因此根据这个性质我们可以把1..p-1分成一个个环,当给1..p-1乘a模p时,会依次得到p-1的排列,即

\small (1a)(2a)(3a)..((p-1)a)\equiv (p-1)!(mod\,\,p)

进而得\small a^{p-1}\equiv 1\, \, (mod\, \, p)

定理九:当n>1时,1..n中与n互质的整数和为\small \frac{n\varphi(n)}{2}

证明:对任意与n互质的数m,有gcd(n,m)=gcd(n,n-m)=1,即对任意m必有n-m与n互质,利用倒序相加法可证

Ex定理一:

欧拉降幂公式:            k>φ(m)

证明:首先,若a与m互质,由欧拉定理可知 ,即证上式

若(a,m)>1,证明就比较长了,分为好几步

先证(t,a)==1,其中

显然构造t是为了排除a的因子,而对a和m的一个公共素因子,有φ(m)>=(pi-1)pi^(k-1)>k,所以a^(φ(m))足够排除所有公共素因子,所以这t和a互质

由于t是m的因子,所以根据欧拉函数的素因子分解式,存在k使φ(m)=kφ(t),故有

两边同乘(m,a^(φ(n)))

所以将k分解为k=pφ(m)+q,其中q=k%φ(m),可得

 

 

定义六:因子和函数σ定义为整数n的所有正因子之和,记为σ(n)

定义七:因子个数函数τ定义为正整数n的所有正因子个数,记为τ(n)

定理十:因子和函数σ和因子个数函数τ是积性函数

证明:设n与m互质,σ(n)=k,σ(m)=s,n的因子为x1,x2,x3...xk,m的因子为y1,y2...ys

那么nm的因子为x1*y1,x1*y2...x1*ys,x2*y1,x2*y2,...,x2*ys....xk*y1,xk*y2,....xk*ys

共有k*s个因子,所以σ(nm)=σ(n)σ(m),σ(n)为积性函数

\tau(nm)=\sum_{i=1}^{k}\sum_{j-1}^{s}x_iy_j=\sum_{i=1}^{k}x_i\sum_{j-1}^{s}y_j=\tau(n)\tau(m),故τ(n)为积性函数

定理十一:\sigma(p^k)=1+p+p^2+..+p^k=\frac{p^{k+1}-1}{p-1}

定理十二:\tau(p^k)=k+1

 

 

定义八:莫比乌斯函数\mu(n)=\left\{\begin{matrix} 1 & n=1\\ (-1)^k& n=p_1p_2...p_k\\ 0& otherwise \end{matrix}\right.

定理十三:莫比乌斯函数为积性函数

证明:分类讨论易证

定理十四:\sum_{d|n}\mu(d)=[n=1]

证明:由于产生影响的项为n=1和不同素数相乘的项,故考虑将n的素因子p1 ,p2 ,p3....pk相互组合形成的数

则根据二项式定理上式可化为\sum_{i=0}^{k}\binom{k}{i}(-1)^i=(1-1)^k

等价于[n=1]

定理十五:

莫比乌斯反演定理:

形式一:

F(n)=\sum_{d|n}f(d),则有f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d} )

形式二:

F(n)=\sum_{n|d}f(d),则有f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)

证明一:

        形式一:

                \sum_{d|n}\mu(d)F(\frac{n}{d})=\sum_{d|n}\mu(d)\sum_{k|\frac{n}{d}}f(k)\\=\sum_{k|n}f(k)\sum_{d|\frac{n}{k}}\mu(d)=\sum_{k|n}f(k)[\frac{n}{k}=1]=f(n)

          其中2个和式可以交换的原因是k和d仅需满足kd|n即可

          形式二:

                  \sum_{n|d}\mu(\frac{d}{n})F(d)=\sum_{k=1}^{+\infty }\mu(k)F(kn)=\sum_{k=1}^{+\infty}\mu(k)\sum_{kn|d}f(d)\\=\sum_{n|d}f(d)\sum_{k|\frac{d}{n}}\mu(k)=\sum_{n|d}f(d)[\frac{d}{n}=1]=f(n)

证明二需要用到狄利克雷卷积,待补

 

定义九:

狄利克雷卷积:对2个算术函数 f , g 定义其Dirichlet卷积为新函数 f * g ,满足(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})

定理十:

          Dirichlet卷积的性质:

                交换律: f * g = g * f

                结合律 :( f * g ) * h = f * ( g * h )

                单位元 :f * e = f

                分配律: f * ( g + h ) = f * g + f * h

证明:交换律和分配律可根据和式的性质证明,单位元显然成立

(f*g)*h(n)=\sum_{d|n}h(\frac{n}{d})\sum_{k|d} f(k)g(\frac{d}{k})=\sum_{ijk|n}f(i)g(j)h(k)

f*(g*h)(n)=\sum_{d|n}f(\frac{n}{d})\sum_{k|d} g(k)h(\frac{d}{k})=\sum_{ijk|n}f(i)g(j)h(k)

可得结合律成立

定理十一:两个积性函数的狄利克雷卷积仍为积性函数

证明:设 h = f * g ,n与m互质,对n和m进行素因子分解,有

n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; m=q_1^{b_1}q_2^{b_2}...q_s^{b_s}

h(nm)=\sum_{d|nm}f(d)g(\frac{nm}{d})

h(n)=\sum_{d|n}f(d)g(\frac{n}{d})

h(m)=\sum_{d|m}f(d)g(\frac{m}{d})

对h(nm)中的每一项d,对其进行素因子分解,可得

d=p_1^{c_1_1}p_2^{c_1_2}...p_k^{c_1_k}q_1^{c_2_1}q_2^{c_2_2}...q_s^{c_2_s}

在h(n)和h(m)中,仅有一项x和y,满足d=xy,且x和y分别为

x=p_1^{c_1_1}p_2^{c_1_2}...p_k^{c_1_k}\;\;\;\;\;\;\;\;\;\;\;\;\;\; y=q_1^{c_2_1}q_2^{c_2_2}...q_s^{c_2_s}

由此可得,h(nm)中的每一项均从h(n)的对应项和h(m)的对应项相乘而成,故h(nm)=h(n)h(m),得证

定理十二:\sum_{d|n}\frac{n}{d}\mu(d)=\varphi(n)

证明:结合\sum_{d|n}\varphi(d)=n和莫比乌斯反演定理可得

小结:

          \large 1*\mu=e

          \large \varphi *1=id

          \large \mu *id=\varphi

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值