《初等数论及其应用》第七章 乘性函数

导言

在本章中,我们研究定义在整数集合上的一类称为 乘性函数(或积性函数)的特殊函数。

  1. 乘性函数具有这样的性质,即它在一个整数上的函数值等于对该整数做素幂因子分解后所有素数幂上的函数值之积。
  2. 我们将证明一些重要的函数是乘性的,包括 因子个数函数因子和函数 以及 欧拉 φ \varphi φ 函数。利用这些函数是乘性函数的性质,基于正整数 n n n 的素幂因子分解,我们得到这些函数在 n n n 处的函数值的公式.

进一步,我们将研究一类称为 完全数 的特殊正整数,这类数与其 真因子 之和相等。我 们将证明所有偶完全数由一类称为梅森素数的特殊素数生成,梅森素数是那些形如 2 p − 1 2^p-1 2p1 p p p 是素数)的素数。人们很早就开始寻找新的梅森素数,而具有很强计算能力的计算机和因特 网的出现加速了这类素数的寻找.

我们还将证明如何用 算术函数(即对所有正整数定义的函数)的 和函数 来得到函数自身的一些信息。函数 f f f 的和函数在 n n n 处的函数值等于 f f f n n n 的所有正因子处的函数值之和。著名的 莫比乌斯反演公式 证明了如何从和函数的取值得到 f f f 的函数取值.

最后,我们将研究关于 无限制拆分受限制拆分 的算术函数。

  1. 所谓 拆分 是指将一个正整数表示为若干个正整数的和,不计其中的次序。
  2. 受限制拆分则是指拆分项受到一定的约束。
  3. 我们将给出一系列令人惊讶的关于这些算术函数之间的等式,并且引入诸多在研究拆分时很重要的概念。

7.1 欧拉函数

在本节中将证明欧拉函数是乘性函数。我们可以通过整数的素幂因子分解来给出乘性函数在该整数上的函数值的计算公式。
定义:定义在所有正整数上的函数称为算术函数。
在本章中,我们关心的是具有某些特殊性质的算术函数。

定义:如果算术函数 f f f 对任意两个互素的正整数 n ,   m n,\ m n, m ,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n) ,就称为 乘性函数(或积性函数)。如果对任意两个正整数 n ,   m n,\ m n, m ,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n) ,就称为 完全乘性(或完全积性)函数。

定理 7.1 乘性函数的计算

如果 f f f 是一个乘性函数,那么对于给定的 n n n 的素幂因子分解,能够得到 f ( n ) f(n) f(n) 的一个简单计算公式。这是一个很有用的结果,它告诉我们在已知 n n n 的素幂因子分解 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas 的情况下如何从 f ( p i a i )   ( i = 1 , 2 , ⋯   , s ) f(p_i^{a_i})\ (i=1,2,\cdots,s) f(piai) (i=1,2,,s) 中得到 f ( n ) f(n) f(n) 的值。
定理 7.1:如果 f f f 是一个乘性函数,且对任意正整数 n n n 有素幂因子分解 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas ,那么 f ( n ) = f ( p 1 a 1 ) f ( p 2 a 2 ) ⋯ f ( p s a s ) f(n)=f(p_1^{a_1})f(p_2^{a_2})\cdots f(p_s^{a_s}) f(n)=f(p1a1)f(p2a2)f(psas)
证明

现在回到欧拉函数,首先考虑它在素数与素数幂处的值。分别在定理 7.2、7.3中说明。

定理 7.2 欧拉函数在素数处的值

定理 7.2:如果 p p p 是素数,那么 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 。反之,如果 p p p 是正整数且满足 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 ,那么 p p p 是素数。
证明:如果 p p p 是素数,那么任意小于 p p p 的正整数都是与 p p p 互素的。因为有 p − 1 p-1 p1 个这样的整数,所以 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 。反之,若 p p p 是正整数且满足 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 ,说明 p ≠ 1 p\ne 1 p=1 p p p 除了 1 和它本身没有别的因数,所以 p p p 为素数。

证明:如果 p p p 是素数,那么任意小于 p p p 的正整数都是与 p p p 互素的。因为有 p − 1 p-1 p1 个这样的整数,所以 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 。反之,如果 p p p 不是素数,那么 p = 1 p=1 p=1 p p p 是合数。如果 p = 1 p=1 p=1 ,那么 φ ( p ) ≠ p − 1 \varphi(p)\ne p-1 φ(p)=p1 ,因为 φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1 。如果 p p p 是合数,那么 p p p 有一个因子 d d d 满足 1 < d < p 1<d<p 1<d<p ,显然 d d d p p p 不互素。由于 p − 1 p-1 p1 个整数 1 , 2 , ⋯   , p − 1 1,2,\cdots,p-1 1,2,,p1 中至少有一个整数(即 d d d )是不和 p p p 互素的,故 φ ( p ) ⩽ p − 2 \varphi(p)\leqslant p-2 φ(p)p2 。因此,如果 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 ,那么 p p p 必是素数。

定理 7.3 欧拉函数在素数幂处的值

定理 7.3:设 p p p 是素数, a a a 是一个正整数,那么 φ ( p a ) = p a − p a − 1 \varphi(p^a)=p^a-p^{a-1} φ(pa)=papa1
证明:不超过 p a p^a pa 且和 p a p^a pa 不互素的正整数就是那些不超过 p a p^a pa 且能够被 p p p 整除的整数,即 k p kp kp ,其中 1 ⩽ k ⩽ p a − 1 1\leqslant k\leqslant p^{a-1} 1kpa1 ,因为恰有 p a − 1 p^{a-1} pa1 个这样的整数,所以存在 p a − p a − 1 p^a-p^{a-1} papa1 个不超过 p a p^a pa 且和 p a p^a pa 互素的正整数。所以 φ ( p a ) = p a − p a − 1 \varphi(p^a)=p^a-p^{a-1} φ(pa)=papa1

定理 7.4 欧拉函数是乘性函数

给定 n n n 的素幂因子分解,为了给出 φ ( n ) \varphi(n) φ(n) 的公式,需要证明 φ \varphi φ 是乘性函数。

定理 7.5 欧拉函数的计算

由定理 7.3,7.4,我们得到下面关于 φ ( n ) \varphi(n) φ(n) 的公式。
定理 7.5:设 n = p 1 a 1 p 2 a 2 ⋯ p k a k n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k} n=p1a1p2a2pkak 为正整数 n n n 的素幂因子分解,那么 φ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p k ) \varphi(n)=n(1-\dfrac{1}{p_1})(1-\dfrac{1}{p_2})\cdots (1-\dfrac{1}{p_k}) φ(n)=n(1p11)(1p21)(1pk1)
证明:因为 φ \varphi φ 是乘性函数,故由定理 7.1 可知 φ ( n ) = φ ( p 2 a 2 ) φ ( p k a k ) ⋯ φ ( p 1 a 1 ) \varphi(n)=\varphi(p_2^{a_2})\varphi(p_k^{a_k})\cdots \varphi(p_1^{a_1}) φ(n)=φ(p2a2)φ(pkak)φ(p1a1)
另外由定理 7.3,我们知道当 j = 1 , 2 , ⋯   , k j=1,2,\cdots,k j=1,2,,k 时,有 φ ( p j a j ) = p j a j − p j a j − 1 = p j a j ( 1 − 1 p j ) \varphi(p_j^{a_j})=p_j^{a_j}-p_{j}^{a_{j-1}}=p_j^{a_j}(1-\dfrac{1}{p_j}) φ(pjaj)=pjajpjaj1=pjaj(1pj1)
因此
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \varphi(n)&=p_…

定理 7.6 欧拉函数值的奇偶

定理 7.6:设 n n n 是一个大于 2 的正整数,那么 φ ( n ) \varphi(n) φ(n) 是偶数。
证明:设 n n n 的素幂因子分解为 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas 。因为 φ \varphi φ 是乘性函数,所以 φ ( n ) = ∏ j = 1 s φ ( p j a j ) \varphi(n)=\displaystyle \prod_{j=1}^{s}\varphi(p_j^{a_j}) φ(n)=j=1sφ(pjaj) 。由定理 7.3,我们知道 φ ( p j a j ) = p j a j − 1 ( p j − 1 ) \varphi(p_j^{a_j})=p_j^{a_j-1}(p_j-1) φ(pjaj)=pjaj1(pj1) 。可以看到当 p j p_j pj 是奇素数时, φ ( p j a j ) \varphi(p_j^{a_j}) φ(pjaj) 是偶数,这是因为当 p j p_j pj 是奇数时, p j − 1 p_j-1 pj1 是偶数;当 p j = 2 p_j=2 pj=2 a j > 1 a_j>1 aj>1 时, p j a j − 1 p_j^{a_j-1} pjaj1 是偶数。给定 n > 2 n>2 n>2 p j p_j pj 是奇数或者 p j = 2 p_j=2 pj=2 a j > 1 a_j>1 aj>1 这两个条件中至少满足一个,所以 φ ( p j a j ) \varphi(p_j^{a_j}) φ(pjaj) 1 ⩽ j ⩽ s 1\leqslant j\leqslant s 1js 时至少有一个是偶数,因此 φ ( n ) \varphi(n) φ(n) 是偶数。

和函数

f f f 是一个算术函数,那么 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d\mid n}f(d) F(n)=dnf(d) 代表 f f f n n n 的所有正因子处的值之和。函数 F F F 称为 f f f 的和函数。
下面证明欧拉函数在 n n n 的所有正因子处的值之和为 n n n ,这个结果在后面也是有用的。这表明欧拉函数的和函数是个 恒等函数,即在 n n n 处的值恰是 n n n

定理 7.7 欧拉函数的和函数

定理 7.7:设 n n n 为正整数,那么 ∑ d ∣ n φ ( d ) = n \sum_{d\mid n}\varphi(d)=n dnφ(d)=n
证明:我们将从 1 1 1 n n n 的整数构成的集合进行分类。整数 m m m 如果与 n n n 的最大公因子为 d d d ,则 m m m 属于 C d C_d Cd 类。也就是说,如果 m m m 属于 C d C_d Cd ,那么 ( m / d ,   n / d ) = 1 (m/d,\ n/d)=1 (m/d, n/d)=1 。所以 C d C_d Cd 中所含的整数的个数是所有不超过 n / d n/d n/d 且和 n / d n/d n/d 互素的正整数的个数,即 C d C_d Cd 中存在 φ ( n / d ) \varphi(n/d) φ(n/d) 个正整数。所以我们可以把这 n n n 个数分为互不相交的类。因此 n = ∑ d ∣ n φ ( n / d ) n=\sum_{d\mid n}\varphi(n/d) n=dnφ(n/d)
因为 d d d 取遍所有整除 n n n 的正整数, n / d n/d n/d 也取遍 n n n 的所有正因子,所以 n = ∑ d ∣ n φ ( n / d ) = ∑ d ∣ n φ ( d ) n=\sum_{d\mid n}\varphi(n/d)=\sum_{d\mid n}\varphi(d) n=dnφ(n/d)=dnφ(d)

一些性质

性质 1 ∀ n ,   n > 1 \forall n,\ n>1 n, n>1 1 , 2 , ⋯   , n 1,2,\cdots,n 1,2,,n 中与 n n n 互质的数的和为 n × φ ( n ) 2 n\times \dfrac{\varphi(n)}{2} n×2φ(n)
性质 2:设 p p p n n n 的因数(无论是质数或素数),若 p ∣ n p\mid n pn p 2 ∣ n p^2\mid n p2n ,则 φ ( n ) = φ ( n / p ) × p \varphi(n)=\varphi(n/p)\times p φ(n)=φ(n/p)×p 。(因为 p ,   n / p p,\ n/p p, n/p 不互质且 n n n n / p n/p n/p 的质因子集合相同)
性质 3:设 p p p n n n 的质因数,若 p ∣ p\mid p p 2 ∤ n p^2\nmid n p2n ,则 φ ( n ) = φ ( n / p ) × φ ( p ) \varphi(n)=\varphi(n/p)\times \varphi(p) φ(n)=φ(n/p)×φ(p) 。(因为 p ,   n / p p,\ n/p p, n/p 互质,若 p p p 为合数,则 p ,   n / p p,\ n/p p, n/p 是否互质不确定)
性质 4:若 i ,   j i,\ j i, j 不互质,则 φ ( i × j ) = φ ( i ) φ ( j ) gcd ⁡ ( i ,   j ) φ ( gcd ⁡ ( i ,   j ) ) \varphi(i\times j)=\dfrac{\varphi(i)\varphi(j)\gcd(i,\ j)}{\varphi(\gcd(i,\ j))} φ(i×j)=φ(gcd(i, j))φ(i)φ(j)gcd(i, j)

一个关于欧拉函数的方程

k k k 是一个给定的正整数,求满足 φ ( n ) = k \varphi(n)=k φ(n)=k 的所有正整数 n n n 的解的一个有用的方法就是给出满足方程 φ ( n ) = ∏ i = 1 k p i a i − 1 ( p i − 1 ) \varphi(n)=\displaystyle\prod_{i=1}^{k}p^{a_i-1}_{i}(p_i-1) φ(n)=i=1kpiai1(pi1) 的所有整数解 n n n ,其中 n n n 的素幂因子分解为 n = ∏ i = 1 k p i a i n=\displaystyle\prod_{i=1}^{k}p_i^{a_i} n=i=1kpiai

7.2 因子和 与 因子个数

7.3 完全数和梅森素数

7.4 莫比乌斯反演

7.5 拆分

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数论的方法 作者:闵嗣鹤 著 出版时间:2011年版 内容简介   《数论的方法》是闵嗣鹤编著的《数论的力法》上册(1958年第一版)、下册(1981年第一版)的合订本。全书分三篇。第一篇介绍数论中几种重要的初等方法,包括шhиpeльmah的密率论及由此发展而成的渐近密率与本分量的理论,brun的筛法与更精密的selberg筛法,素数定理的初等证明与弱型goldbach问题的初等解法等;第二篇介绍解析数论的一些基本理论与方法,包括关于黎曼ζ函数与狄氏L函数的一些基本理论及应用这些理论来研究自然数申中或一般算术级数中的素数分布的方法等;第三篇系统地论述了:角和方法,包括有理型三角和、素变数:三角和及二维三角和力法等。三角和力法:是数论中最重要的方法之一。作者以较少的篇幅,阐明了三角和方法的基本内容,并且给出了在哥德巴赫问题、除数问题等方面的应用。《数论的方法》适合高等院校数学系大学生、研究生、教师阅读,可作为大学数学和物理专业的教学参考书,也可供相关的数学工作者阅读参考。 目录 符号说明 上册 第一篇 初等的方法 第一章 ШНИРЕЛЪМАН的密率论 §1. 堆垒数论的问题 §2. 密率的引进 §3. Landau-Шнирелъман的假说及其证明 §4. 基本引理的证明 第二章 Brun的筛法 §1. 引论 §2. 一个代数递推公式 §3. 筛数kj的引进 §4. 主要项E的结构 §5. 筛数的决定与E及R的估计 §6. 用筛法所得的结果 §7. Brun筛法的几个应用 第三章 素数定理的初等证明 §1. 引论 §2. 若干简单结果 §3. Selberg不等式 §4. Selberg不等式的推论 §5. 几个一般的定理 §6. 素数定理 第四章 Selberg的筛法 §1. Selberg筛法的引进 §2. Selberg定理 §3. Selberg筛法的应用之一:算术级数中的素数分布 §4. Selberg筛法的应用之二:表充分大偶数成两个素数之和 第五章 渐近密率与本分量 §1. 渐近密率 §2. 本分量 §3. 表充分大的整数为素数和 第二篇 解析的方法 第六章 狄氏级数 §1. 引论 §2. 收敛半面与绝对收敛半面 §3. 狄氏级数所表示函数的阶 §4. Perron公式 §5. 均值公式 §6. 黎曼ζ函数及与之有关的狄氏级数 第七章黎曼ζ函数的解析质及其函数方程 §1. 解析开拓 §2. 黎曼ζ函数函数方程 附录§1. Γ函数的一些质 附录§2. Poisson求和公式 第八章 素数定理的改进 §1. 引论 §2. 问题的转移(一) §3. 几个关于解析函数的定理 §4. 问题的转移(二) §5. 黎曼ζ函数的零点 §6. 问题的转移(三) 第九章 算术级数中的素数分布 §1. 引论 §2. L函数的零点分布(一) §3. L函数的零点分布(二) §4. 主要定理的证明 下册 第三篇 三角和的方法 第十章 三角和在数论中的作用 §1. 格点与三角和 §2. 同余式的解数与三角和 §3. 丟番图方程的解数与三角和 第十一章 有理型三角和 §1. 有理型三角和的平均值 §2. Mordell的结果 §3. Mordell结果的n维推广 §4. 华罗庚的结果及其改进 第十二章 Van derCorput的方法 §1. 三角积分 §2. 三角和的反转公式 §3. 黎曼ζ函数的渐?公式 §4. 黎曼ζ函数的阶的初步估计 §5. Van der Corput方法的两个步骤 §6. *的阶的进一步估计 附录 Phragmén-Lindel*f定理 第十三章 除数问题 §1. 一般除数问题的初步结果 §2. 略进一步的结果 §3. 对于Δ2(x)的进一步估计 第十四章 二维的方法 §1. 二重三角积分 §2. 关于二重三角和的不等式 §3. Titchmarsh关于*的估计 §4. 二重三角和的另一种估计方法 第十五章Goldbach-ВИНОГРАДОВ定理 §1. 引论 §2. 证明的?要步骤 §3. 基本区间上的积分 §4. 余区间上的积分 §5. r(n)的渐近公式 第十六章ВИНОГРАДОВ的中值公式与三角和的估计 §1. 引论 §2. 一个丢番图方程组 §3. 一个递推公式 §4. 中值公式 §5. 三角和的估计 附录 ВИНОГРАДОВ的中值公式 跋
一、本书的内容 目前,市面上有关计算机算法的书很多,有些叙述严谨但不全面,另外一些则是容量很大但不够严谨。本书将叙述的严谨以及内容的深度和广度有机地结合了起来。第1版推出后,即在世界范围内受到了广泛的欢迎,被各高等院校用作多种课程的教材和业界的标准参考资料。它深入浅出地介绍了大量的算法及相关的数据结构,以及用于解决一些复杂计算问题的高级策略(如动态规划、贪心算法、平摊分析等),重点在于算法的分析和设计。对于每一个专题,作者都试图提供目前最新的研究成果及样例解答,并通过清晰的图示来说明算法的执行过程。. 本书是原书的第2版,在第1版的基础之上增加了一些新的内容,涉及算法的作用、概率分析和随机化算法、线规划,以及对第1版中详尽的、几乎涉及到每一小节的修订。这些修订看似细微,实际上非常重要。书中引入了“循环不变式”,并贯穿始终地用来证明算法的正确。在不改动数学和分析重点的前提下,作者将第1版中的许多数学基础知识从第一部分移到了附录中。 二、本书的特点 本书在进行算法分析的过程中,保持了很好的数学严谨。书中的分析和设计可以被具有各种水平的读者所理解。相对来说,每一章都可以作为一个相对独立的单元来教授或学习。书中的算法以英语加伪代码的形式给出,只要有一点程序设计经验的人都能读懂,并可以用任何计算机语言(如C/C++和Java等)方便地实现。在书中,作者将算法的讨论集中在一些比较现代的例子上,它们来自分子生物学(如人类基因项目)、商业和工程等领域。每一小节通常以对相关历史素材的讨论结束,讨论了在每一算法领域的原创研究。 本书的特点可以概括为以下几个方面: 1.概念清晰,广度、深度兼顾。 本书收集了现代计算机常用的数据结构和算法,并作了系统而深入的介绍。对涉及的概念和背景知识都作了清晰的阐述,有关的定理给出了完整的证明。 2.“五个一”的描述方法。 本书以相当的深度介绍了许多常用的数据结构和有效的算法。编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。.. 3.图文并茂,可读强。 书中的算法均以通俗易懂的语言进行说明,并采用了大量插图来说明算法是如何工作的,易于理解。 4.算法的“伪代码”形式简明实用。 书中的算法均以非常简明的“伪代码”形式来设计,可以很容易地把它转化为计算机程序,直接应用。 注重算法设计的效率,对所有的算法进行了仔细、精确的运行时间分析,有利于进一步改进算法。 三、本书的用法 本书对内容进行了精心的设计和安排,尽可能考虑到所有水平的读者。即使是初学计算机算法的人,也可以在本书中找到所需的材料。 每一章都是独立的,读者只需将注意力集中到最感兴趣的章节阅读。 1.适合作为教材或教学参考书。 本书兼顾通用与系统,覆盖了许多方面的内容。本书不但阐述通俗、严谨,而且提供了大量练习和思考题。针对每一节的内容,都给出了数量和难度不等的练习题。练习题用于考察对基本内容的掌握程度,思考题有一定的难度,需进行精心的研究,有时还通过思考题介绍一些新的知识。 前言回到顶部↑本书提供了对当代计算机算法研究的一个全面、综合的介绍。书中给出了多个算法,并对它们进行了较为深入的分析,使得这些算法的设计和分析易于被各个层次的读者所理解。力求在不牺牲分析的深度和数学严密的前提下,给出深入浅出的说明。. 书中每一章都给出了一个算法、一种算法设计技术、一个应用领域或一个相关的主题。算法是用英语和一种“伪代码”来描述的,任何有一点程序设计经验的人都能看得懂。书中给出了230多幅图,说明各个算法的工作过程。我们强调将算法的效率作为一种设计标准,对书中的所有算法,都给出了关于其运行时间的详细分析。 本书主要供本科生和研究生的算法或数据结构课程使用。因为书中讨论了算法设计中的工程问题及其数学质,因此,本书也可以供专业技术人员自学之用。 本书是第2版。在这个版本里,我们对全书进行了更新。所做的改动从新增了若干章,到个别语句的改写。 致使用本书的教师 本书的设计目标是全面、适用于多种用途。它可用于若干课程,从本科生的数据结构课程到研究生的算法课程。由于书中给出的内容比较多,只讲一学期一般讲不完,因此,教师们应该将本书看成是一种“缓存区”或“瑞典式自助餐”,从中挑选出能最好地支持自己希望教授的课程的内容。 教师们会发现,要围绕自己所需的各个章节来组织课程是比较容易的。书中的各章都是相对独立的,因此,你不必担心意想不到的或不必要的各章之间的依赖关系。每一章都是以节为单位,内容由易到难。如果将本书用于本科生的课程,可以选用每一章的前面几节内容;在研究生课程中,则可以完整地讲授每一章。 全书包含920多个练习题和140多个思考题。每一节结束时给出练习题,每一章结束时给出一些

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值