《初等数论及其应用》第七章 乘性函数

导言

在本章中,我们研究定义在整数集合上的一类称为 乘性函数(或积性函数)的特殊函数。

  1. 乘性函数具有这样的性质,即它在一个整数上的函数值等于对该整数做素幂因子分解后所有素数幂上的函数值之积。
  2. 我们将证明一些重要的函数是乘性的,包括 因子个数函数因子和函数 以及 欧拉 φ \varphi φ 函数。利用这些函数是乘性函数的性质,基于正整数 n n n 的素幂因子分解,我们得到这些函数在 n n n 处的函数值的公式.

进一步,我们将研究一类称为 完全数 的特殊正整数,这类数与其 真因子 之和相等。我 们将证明所有偶完全数由一类称为梅森素数的特殊素数生成,梅森素数是那些形如 2 p − 1 2^p-1 2p1 p p p 是素数)的素数。人们很早就开始寻找新的梅森素数,而具有很强计算能力的计算机和因特 网的出现加速了这类素数的寻找.

我们还将证明如何用 算术函数(即对所有正整数定义的函数)的 和函数 来得到函数自身的一些信息。函数 f f f 的和函数在 n n n 处的函数值等于 f f f n n n 的所有正因子处的函数值之和。著名的 莫比乌斯反演公式 证明了如何从和函数的取值得到 f f f 的函数取值.

最后,我们将研究关于 无限制拆分受限制拆分 的算术函数。

  1. 所谓 拆分 是指将一个正整数表示为若干个正整数的和,不计其中的次序。
  2. 受限制拆分则是指拆分项受到一定的约束。
  3. 我们将给出一系列令人惊讶的关于这些算术函数之间的等式,并且引入诸多在研究拆分时很重要的概念。

7.1 欧拉函数

在本节中将证明欧拉函数是乘性函数。我们可以通过整数的素幂因子分解来给出乘性函数在该整数上的函数值的计算公式。
定义:定义在所有正整数上的函数称为算术函数。
在本章中,我们关心的是具有某些特殊性质的算术函数。

定义:如果算术函数 f f f 对任意两个互素的正整数 n ,   m n,\ m n, m ,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n) ,就称为 乘性函数(或积性函数)。如果对任意两个正整数 n ,   m n,\ m n, m ,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n) ,就称为 完全乘性(或完全积性)函数。

定理 7.1 乘性函数的计算

如果 f f f 是一个乘性函数,那么对于给定的 n n n 的素幂因子分解,能够得到 f ( n ) f(n) f(n) 的一个简单计算公式。这是一个很有用的结果,它告诉我们在已知 n n n 的素幂因子分解 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas 的情况下如何从 f ( p i a i )   ( i = 1 , 2 , ⋯   , s ) f(p_i^{a_i})\ (i=1,2,\cdots,s) f(piai) (i=1,2,,s) 中得到 f ( n ) f(n) f(n) 的值。
定理 7.1:如果 f f f 是一个乘性函数,且对任意正整数 n n n 有素幂因子分解 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas ,那么 f ( n ) = f ( p 1 a 1 ) f ( p 2 a 2 ) ⋯ f ( p s a s ) f(n)=f(p_1^{a_1})f(p_2^{a_2})\cdots f(p_s^{a_s}) f(n)=f(p1a1)f(p2a2)f(psas)
证明

现在回到欧拉函数,首先考虑它在素数与素数幂处的值。分别在定理 7.2、7.3中说明。

定理 7.2 欧拉函数在素数处的值

定理 7.2:如果 p p p 是素数,那么 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 。反之,如果 p p p 是正整数且满足 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 ,那么 p p p 是素数。
证明:如果 p p p 是素数,那么任意小于 p p p 的正整数都是与 p p p 互素的。因为有 p − 1 p-1 p1 个这样的整数,所以 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 。反之,若 p p p 是正整数且满足 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 ,说明 p ≠ 1 p\ne 1 p=1 p p p 除了 1 和它本身没有别的因数,所以 p p p 为素数。

证明:如果 p p p 是素数,那么任意小于 p p p 的正整数都是与 p p p 互素的。因为有 p − 1 p-1 p1 个这样的整数,所以 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 。反之,如果 p p p 不是素数,那么 p = 1 p=1 p=1 p p p 是合数。如果 p = 1 p=1 p=1 ,那么 φ ( p ) ≠ p − 1 \varphi(p)\ne p-1 φ(p)=p1 ,因为 φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1 。如果 p p p 是合数,那么 p p p 有一个因子 d d d 满足 1 < d < p 1<d<p 1<d<p ,显然 d d d p p p 不互素。由于 p − 1 p-1 p1 个整数 1 , 2 , ⋯   , p − 1 1,2,\cdots,p-1 1,2,,p1 中至少有一个整数(即 d d d )是不和 p p p 互素的,故 φ ( p ) ⩽ p − 2 \varphi(p)\leqslant p-2 φ(p)p2 。因此,如果 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 ,那么 p p p 必是素数。

定理 7.3 欧拉函数在素数幂处的值

定理 7.3:设 p p p 是素数, a a a 是一个正整数,那么 φ ( p a ) = p a − p a − 1 \varphi(p^a)=p^a-p^{a-1} φ(pa)=papa1
证明:不超过 p a p^a pa 且和 p a p^a pa 不互素的正整数就是那些不超过 p a p^a pa 且能够被 p p p 整除的整数,即 k p kp kp ,其中 1 ⩽ k ⩽ p a − 1 1\leqslant k\leqslant p^{a-1} 1kpa1 ,因为恰有 p a − 1 p^{a-1} pa1 个这样的整数,所以存在 p a − p a − 1 p^a-p^{a-1} papa1 个不超过 p a p^a pa 且和 p a p^a pa 互素的正整数。所以 φ ( p a ) = p a − p a − 1 \varphi(p^a)=p^a-p^{a-1} φ(pa)=papa1

定理 7.4 欧拉函数是乘性函数

给定 n n n 的素幂因子分解,为了给出 φ ( n ) \varphi(n) φ(n) 的公式,需要证明 φ \varphi φ 是乘性函数。

定理 7.5 欧拉函数的计算

由定理 7.3,7.4,我们得到下面关于 φ ( n ) \varphi(n) φ(n) 的公式。
定理 7.5:设 n = p 1 a 1 p 2 a 2 ⋯ p k a k n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k} n=p1a1p2a2pkak 为正整数 n n n 的素幂因子分解,那么 φ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p k ) \varphi(n)=n(1-\dfrac{1}{p_1})(1-\dfrac{1}{p_2})\cdots (1-\dfrac{1}{p_k}) φ(n)=n(1p11)(1p21)(1pk1)
证明:因为 φ \varphi φ 是乘性函数,故由定理 7.1 可知 φ ( n ) = φ ( p 2 a 2 ) φ ( p k a k ) ⋯ φ ( p 1 a 1 ) \varphi(n)=\varphi(p_2^{a_2})\varphi(p_k^{a_k})\cdots \varphi(p_1^{a_1}) φ(n)=φ(p2a2)φ(pkak)φ(p1a1)
另外由定理 7.3,我们知道当 j = 1 , 2 , ⋯   , k j=1,2,\cdots,k j=1,2,,k 时,有 φ ( p j a j ) = p j a j − p j a j − 1 = p j a j ( 1 − 1 p j ) \varphi(p_j^{a_j})=p_j^{a_j}-p_{j}^{a_{j-1}}=p_j^{a_j}(1-\dfrac{1}{p_j}) φ(pjaj)=pjajpjaj1=pjaj(1pj1)
因此
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \varphi(n)&=p_…

定理 7.6 欧拉函数值的奇偶

定理 7.6:设 n n n 是一个大于 2 的正整数,那么 φ ( n ) \varphi(n) φ(n) 是偶数。
证明:设 n n n 的素幂因子分解为 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas 。因为 φ \varphi φ 是乘性函数,所以 φ ( n ) = ∏ j = 1 s φ ( p j a j ) \varphi(n)=\displaystyle \prod_{j=1}^{s}\varphi(p_j^{a_j}) φ(n)=j=1sφ(pjaj) 。由定理 7.3,我们知道 φ ( p j a j ) = p j a j − 1 ( p j − 1 ) \varphi(p_j^{a_j})=p_j^{a_j-1}(p_j-1) φ(pjaj)=pjaj1(pj1) 。可以看到当 p j p_j pj 是奇素数时, φ ( p j a j ) \varphi(p_j^{a_j}) φ(pjaj) 是偶数,这是因为当 p j p_j pj 是奇数时, p j − 1 p_j-1 pj1 是偶数;当 p j = 2 p_j=2 pj=2 a j > 1 a_j>1 aj>1 时, p j a j − 1 p_j^{a_j-1} pjaj1 是偶数。给定 n > 2 n>2 n>2 p j p_j pj 是奇数或者 p j = 2 p_j=2 pj=2 a j > 1 a_j>1 aj>1 这两个条件中至少满足一个,所以 φ ( p j a j ) \varphi(p_j^{a_j}) φ(pjaj) 1 ⩽ j ⩽ s 1\leqslant j\leqslant s 1js 时至少有一个是偶数,因此 φ ( n ) \varphi(n) φ(n) 是偶数。

和函数

f f f 是一个算术函数,那么 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d\mid n}f(d) F(n)=dnf(d) 代表 f f f n n n 的所有正因子处的值之和。函数 F F F 称为 f f f 的和函数。
下面证明欧拉函数在 n n n 的所有正因子处的值之和为 n n n ,这个结果在后面也是有用的。这表明欧拉函数的和函数是个 恒等函数,即在 n n n 处的值恰是 n n n

定理 7.7 欧拉函数的和函数

定理 7.7:设 n n n 为正整数,那么 ∑ d ∣ n φ ( d ) = n \sum_{d\mid n}\varphi(d)=n dnφ(d)=n
证明:我们将从 1 1 1 n n n 的整数构成的集合进行分类。整数 m m m 如果与 n n n 的最大公因子为 d d d ,则 m m m 属于 C d C_d Cd 类。也就是说,如果 m m m 属于 C d C_d Cd ,那么 ( m / d ,   n / d ) = 1 (m/d,\ n/d)=1 (m/d, n/d)=1 。所以 C d C_d Cd 中所含的整数的个数是所有不超过 n / d n/d n/d 且和 n / d n/d n/d 互素的正整数的个数,即 C d C_d Cd 中存在 φ ( n / d ) \varphi(n/d) φ(n/d) 个正整数。所以我们可以把这 n n n 个数分为互不相交的类。因此 n = ∑ d ∣ n φ ( n / d ) n=\sum_{d\mid n}\varphi(n/d) n=dnφ(n/d)
因为 d d d 取遍所有整除 n n n 的正整数, n / d n/d n/d 也取遍 n n n 的所有正因子,所以 n = ∑ d ∣ n φ ( n / d ) = ∑ d ∣ n φ ( d ) n=\sum_{d\mid n}\varphi(n/d)=\sum_{d\mid n}\varphi(d) n=dnφ(n/d)=dnφ(d)

一些性质

性质 1 ∀ n ,   n > 1 \forall n,\ n>1 n, n>1 1 , 2 , ⋯   , n 1,2,\cdots,n 1,2,,n 中与 n n n 互质的数的和为 n × φ ( n ) 2 n\times \dfrac{\varphi(n)}{2} n×2φ(n)
性质 2:设 p p p n n n 的因数(无论是质数或素数),若 p ∣ n p\mid n pn p 2 ∣ n p^2\mid n p2n ,则 φ ( n ) = φ ( n / p ) × p \varphi(n)=\varphi(n/p)\times p φ(n)=φ(n/p)×p 。(因为 p ,   n / p p,\ n/p p, n/p 不互质且 n n n n / p n/p n/p 的质因子集合相同)
性质 3:设 p p p n n n 的质因数,若 p ∣ p\mid p p 2 ∤ n p^2\nmid n p2n ,则 φ ( n ) = φ ( n / p ) × φ ( p ) \varphi(n)=\varphi(n/p)\times \varphi(p) φ(n)=φ(n/p)×φ(p) 。(因为 p ,   n / p p,\ n/p p, n/p 互质,若 p p p 为合数,则 p ,   n / p p,\ n/p p, n/p 是否互质不确定)
性质 4:若 i ,   j i,\ j i, j 不互质,则 φ ( i × j ) = φ ( i ) φ ( j ) gcd ⁡ ( i ,   j ) φ ( gcd ⁡ ( i ,   j ) ) \varphi(i\times j)=\dfrac{\varphi(i)\varphi(j)\gcd(i,\ j)}{\varphi(\gcd(i,\ j))} φ(i×j)=φ(gcd(i, j))φ(i)φ(j)gcd(i, j)

一个关于欧拉函数的方程

k k k 是一个给定的正整数,求满足 φ ( n ) = k \varphi(n)=k φ(n)=k 的所有正整数 n n n 的解的一个有用的方法就是给出满足方程 φ ( n ) = ∏ i = 1 k p i a i − 1 ( p i − 1 ) \varphi(n)=\displaystyle\prod_{i=1}^{k}p^{a_i-1}_{i}(p_i-1) φ(n)=i=1kpiai1(pi1) 的所有整数解 n n n ,其中 n n n 的素幂因子分解为 n = ∏ i = 1 k p i a i n=\displaystyle\prod_{i=1}^{k}p_i^{a_i} n=i=1kpiai

7.2 因子和 与 因子个数

7.3 完全数和梅森素数

7.4 莫比乌斯反演

7.5 拆分

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值