如果任意分布F的密度函数f(x)关于y轴对称,其分布函数F(x)=1-F(-x)

t\left( c \right)为t分布的分布函数,求证t\left( -c \right)=1-t\left( c \right)

有引理如下,

\begin{align} & \int_{-\infty }^{x}{f\left( t \right)}dt=\int_{-\left( \infty \right)}^{-\left( -x \right)}{f\left( t \right)}dt \\ & =\int_{\infty }^{-x}{f\left( -\left( k \right) \right)}{​{\left( -k \right)}^{\prime }}dk \\ & =\int_{\infty }^{-x}{-f\left( -k \right)}dk \\ & =\int_{-x}^{\infty }{f\left( -t \right)}dt \\ \end{align}

T分布的密度函数为{​{f}_{n}}\left( x \right)=\frac{\Gamma \left( \frac{n+1}{2} \right)}{\sqrt{\pi n}\Gamma \left( \frac{n}{2} \right)}{​{\left( 1+\frac{​{​{x}^{2}}}{n} \right)}^{-\frac{n\text{+1}}{2}}},显然有{​{f}_{n}}\left( -x \right)={​{f}_{n}}\left( x \right)

分布函数

\begin{align} & t\left( c \right)=\int_{-\infty }^{c}{​{​{f}_{n}}\left( x \right)dx} \\ & =\int_{-c}^{\infty }{​{​{f}_{n}}\left( -x \right)dx}=\int_{-c}^{\infty }{​{​{f}_{n}}\left( x \right)dx} \\ & =\int_{-\infty }^{\infty }{​{​{f}_{n}}\left( x \right)dx}-\int_{-\infty }^{-c}{​{​{f}_{n}}\left( x \right)dx} \\ & =1-t\left( -c \right) \\ \end{align}

根据上面的证明,

一般地,如果任意分布F的密度函数f(x)关于y轴对称,其分布函数F(x)=1-F(-x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值