- 博客(3)
- 收藏
- 关注
原创 积性函数、狄利克雷卷积的一些结论
T0T_0T0 μ(n)\mu(n)μ(n)莫比乌斯函数,φ(n)\varphi(n)φ(n)欧拉函数,u(n)=1u(n)=1u(n)=1,e(n)=ne(n)=ne(n)=n,I(n)=[n=1]I(n)=[n=1]I(n)=[n=1],σk(n)=∑d∣ndk\sigma_k(n)=\sum_{d|n}d^kσk(n)=∑d∣ndk。 ω(n)\omega (n)ω(n)为nnn的不同素因子个数,Ω(n)\Omega (n)Ω(n)为nnn的所有素因子个数。λ(n)=(−1)Ω(n)\lambd
2020-11-18 14:42:08 312
原创 2020江西ICPC省赛 A.Simple Math Problem(莫比乌斯反演)
题目链接 DescriptionDescriptionDescription SolutionSolutionSolution ∑i=1n∑j=1iF(j)[gcd(i,j)=1]\sum_{i=1}^{n}\sum_{j=1}^{i}F(j)[gcd(i,j)=1]i=1∑nj=1∑iF(j)[gcd(i,j)=1] =∑i=1n∑j=1iF(j)∑d∣gcd(i,j)μ(d)=\sum_{i=1}^{n}\sum_{j=1}^{i}F(j)\sum_{d|gcd(i,j)}\mu(d)=i=1∑
2020-11-19 18:05:23 584
原创 2020吉林省程序设计竞赛题解
DescriptionDescriptionDescription 题目链接 SolutionSolutionSolution 问题求h(x)=∑i=1n∑j=1n[gcd(ai,aj)=x]h(x)=\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(a_i,a_j)=x]h(x)=∑i=1n∑j=1n[gcd(ai,aj)=x]。 设f(t)f(t)f(t)为ttt在序列aaa中出现的次数。 所以h(x)=∑i=1mf(i)∑j=1nf(j)[gcd(i,j)=x]h(x)
2020-11-12 11:58:25 1838
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人