[省选前题目整理][BZOJ 1565][NOI 2009]植物大战僵尸(最小割+最大权闭合子图建模)

142 篇文章 0 订阅
31 篇文章 0 订阅

题目链接

http://www.lydsy.com/JudgeOnline/problem.php?id=1565

思路

最大权闭合子图建模。
在最大权闭合子图问题中,整个问题可以看成一个有向图,并存在若干关系,每个关系可以表示为选择点u,则点v也必须被选。每个点都有权值,要让选出来的点的点权之和最大。

那么在这个问题中,我们可以把每个植物被吃了表示为一个点被选择了,那么我们要让最终僵尸的收益最大,就是相当于选择的点点权之和最大。

而在这个问题中,选择一个点u,就必须选择其他若干个点v,v显然是u保护的对象,相当于吃了u之后,就能得到所有的它保护的点v。由于僵尸是从右边开始攻击的,因此对于一个植物x而言,它的左边的植物也可以看作是被它保护的。

代码

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>

#define MAXE 700000
#define MAXV 1000
#define INF 0x3f3f3f3f

using namespace std;

int S,T;

struct edge
{
    int u,v,cap,next;
}edges[MAXE];

int head[MAXV],nCount=1;
int inDegree[MAXV];

void AddEdge(int U,int V,int C)
{
    edges[++nCount].u=U;
    edges[nCount].v=V;
    edges[nCount].cap=C;
    edges[nCount].next=head[U];
    head[U]=nCount;
}

void add(int U,int V,int C)
{
    AddEdge(U,V,C);
    AddEdge(V,U,0);
    inDegree[U]++;
}

int layer[MAXV];
int q[MAXE];
int val[MAXV],ans=0,m,n;
bool used[MAXV];

bool CountLayer()
{
    memset(layer,-1,sizeof(layer));
    int h=0,t=1;
    q[h]=S;
    layer[S]=1;
    while(h<t)
    {
        int u=q[h++];
        for(int p=head[u];p!=-1;p=edges[p].next)
        {
            int v=edges[p].v;
            if(layer[v]==-1&&edges[p].cap&&used[v])
            {
                layer[v]=layer[u]+1;
                q[t++]=v;
            }
        }
    }
    return layer[T]!=-1;
}

int DFS(int u,int flow)
{
    if(u==T) return flow;
    int used=0;
    for(int p=head[u];p!=-1;p=edges[p].next)
    {
        int v=edges[p].v;
        if(layer[v]==layer[u]+1&&edges[p].cap)
        {
            int tmp=DFS(v,min(edges[p].cap,flow-used));
            used+=tmp;
            edges[p].cap-=tmp;
            edges[p^1].cap+=tmp;
            if(used==flow) return used;
        }
    }
    if(!used) layer[u]=-1;
    return used;
}

int Dinic()
{
    int maxflow=0;
    while(CountLayer())
        maxflow+=DFS(S,INF);
    return maxflow;
}

void TopoSort()
{
    int h=0,t=0;
    for(int i=S;i<=T;i++)
        if(!inDegree[i])
            q[t++]=i;
    while(h<t)
    {
        int u=q[h++];
        used[u]=true;
        if(val[u]>0) ans+=val[u];
        for(int p=head[u];p!=-1;p=edges[p].next)
        {
            int v=edges[p].v;
            if(p&1)
            {
                inDegree[v]--;
                if(!inDegree[v])
                    q[t++]=v;
            }
        }
    }
}

inline int calc(int x,int y)
{
    return (x-1)*m+y;
}

int main()
{
    memset(head,-1,sizeof(head));
    nCount=1;
    scanf("%d%d",&n,&m);
    S=0,T=n*m+1;
    for(int i=1;i<=n*m;i++)
    {
        int tot,x,y;
        scanf("%d",&val[i]);
        if(val[i]>0) //!!!吃这个植物可以得到能量
            add(S,i,val[i]);
        else //吃这个植物要消耗能量
            add(i,T,-val[i]);
        scanf("%d",&tot);
        for(int j=1;j<=tot;j++)
        {
            scanf("%d%d",&x,&y);
            add(calc(x+1,y+1),i,INF);
        }
        if(i%m) add(i,i+1,INF);
    }
    TopoSort();
    printf("%d\n",ans-Dinic());
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值