[BZOJ 1505][NOI 2004]小H的小屋(DP优化)

142 篇文章 0 订阅
59 篇文章 0 订阅

题目链接

http://www.lydsy.com/JudgeOnline/problem.php?id=1505

思路

g[i][j] 表示南方向上, x 轴方向上长度为i的区间,划分成 j 个矩形的最小面积。f[k][i][j]表示 x 轴方向上长度为k的区间,北方向上放 i 个矩形,南方向上放j个矩形的最小面积。

可以得到下面的dp方程

g[i][j]=mini<i{g[i][j1]+(ii)2K2}

f[k][i][j]=mink<k,j<j{f[k][i1][j]+(kk)2K1+g[kk][jj]}

g[][] 的过程复杂度是 O(n3) ,可以接受,但求 f[][][] 的复杂度是 O(n5) ,太慢了。可以发现,假设 f[k][i][j] 是从 f[k1][i1][j1] 递推而来, f[k][i1][j] 是从 f[k2][i2][j2] 递推而来,那么有 k1>k2,j1>j2

这是显然的,同样长度的区间,划分的话,一定是划分得尽量均匀,让每一段矩形的大小尽量接近。那么显然划分成 i 段,北面最后一段矩形的长度比划分成i1段,北面最后一段矩形的长度短。

利用这个特点,每次DP枚举 k,j 时,我们只需要从 k2,j2 开始枚举即可。这样复杂度就降到了 O(n3)

代码

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>

#define MAXN 110
#define INF 1e200

using namespace std;

double f[MAXN][MAXN][MAXN],g[MAXN][MAXN];
double K1,K2;
int m,n;
int lastk[MAXN][MAXN][MAXN],lastj[MAXN][MAXN][MAXN]; //lastk[k][i][j]=k',lastj[k][i][j]=j'表示f[k][i][j]是从f[k'][i-1][j']转移来的

int main()
{
    scanf("%lf%lf%d%d",&K1,&K2,&m,&n);
    for(int i=0;i<MAXN;i++)
        for(int j=0;j<MAXN;j++)
            g[i][j]=INF;
    for(int i=0;i<MAXN;i++)
        for(int j=0;j<MAXN;j++)
            for(int k=0;k<MAXN;k++)
                f[i][j][k]=INF;
    g[0][0]=0;
    for(int i=1;i<=100;i++)
        for(int j=1;j<=i;j++)
            for(int k=j-1;k<i;k++)
                g[i][j]=min(g[i][j],g[k][j-1]+(i-k)*(i-k)*K2);
    f[0][0][0]=0;
    for(int k=1;k<=100;k++)
        for(int i=1;i<=m;i++)
            for(int j=1;j<=n;j++)
            {
                for(int lk=lastk[k][i-1][j];lk<k;lk++)
                    for(int lj=lastj[k][i-1][j];lj<j;lj++)
                    {
                        if(f[lk][i-1][lj]+(k-lk)*(k-lk)*K1+g[k-lk][j-lj]<f[k][i][j])
                        {
                            f[k][i][j]=f[lk][i-1][lj]+(k-lk)*(k-lk)*K1+g[k-lk][j-lj];
                            lastk[k][i][j]=lk;
                            lastj[k][i][j]=lj;
                        }
                    }
            }
    printf("%.1lf\n",f[100][m][n]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值