最大比例
X星球的某个大奖赛设了M级奖励。每个级别的奖金是一个正整数。
并且,相邻的两个级别间的比例是个固定值。
也就是说:所有级别的奖金数构成了一个等比数列。比如:
16,24,36,54
其等比值为:3/2
现在,我们随机调查了一些获奖者的奖金数。
请你据此推算可能的最大的等比值。
输入格式:
第一行为数字 N (0<N<100),表示接下的一行包含N个正整数
第二行N个正整数Xi(Xi<1 000 000 000 000),用空格分开。每个整数表示调查到的某人的奖金数额
要求输出:
一个形如A/B的分数,要求A、B互质。表示可能的最大比例系数
测试数据保证了输入格式正确,并且最大比例是存在的。
例如,输入:
3
1250 200 32
程序应该输出:
25/4
再例如,输入:
4
3125 32 32 200
程序应该输出:
5/2
再例如,输入:
3
549755813888 524288 2
程序应该输出:
4/1
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
第一次gcd:所有输入的数中两两之间的gcd,分别得到两两之间比例的分子与分母
第二次gcd:所有分子之间的gcd & 所有分母之间的gcd
AC Code:
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
#include <iostream>
using namespace std;
typedef long long ll;
ll a[105], b[105], c[105];
ll gcd(ll x, ll y) {
return x % y == 0 ? y : gcd(y, x % y);
}
int main(){
int n;
while (scanf("%d", &n) != EOF) {
for (int i = 0; i < n; ++i) {
scanf("%lld", &a[i]);
}
sort(a, a + n);
int cnt = 0;
for (int i = n - 1; i > 0; --i) {
if (a[i] == a[i - 1]) continue;
ll g = gcd(a[i], a[i - 1]);
b[cnt] = a[i] / g; //分子
c[cnt++] = a[i - 1] / g; //分母
}
ll x = gcd(b[0], b[1]);
ll y = gcd(c[0], c[1]);
for (int i = 2; i < cnt; ++i) { //所有分子、分母两两之间的gcd
x = gcd(x, b[i]);
y = gcd(y, c[i]);
}
sort(b, b + cnt);
sort(c, c + cnt);
bool flag1 = true, flag2 = true;
for (int i = 0; i < cnt; ++i) { //不等于分子 & 分母gcd中最小的分子 & 分母,以得到最简约分
if (!flag1 && !flag2) break;
if (b[i] != x && flag1) {
x = b[i] / x;
flag1 = false;
}
if (c[i] != y && flag2) {
y = c[i] / y;
flag2 = false;
}
}
printf("%lld/%lld\n", x, y);
}
return 0;
}